主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

存在基数约束的投资组合效率评价方法

展开
  • 1. 湖南大学工商管理学院, 湖南 长沙 410082;
    2. Business School, University of Kent, Kent, CT2 7PE

收稿日期: 2015-10-05

  修回日期: 2016-06-07

  网络出版日期: 2017-05-03

基金资助

国家自然科学基金面上项目(71371067);国家自然科学基金重点项目(71431008)

Performance Evaluation of Portfolios with Cardinality Constraints

Expand
  • 1. School of Business Administration, Hunan University, Changsha 410082, China;
    2. Business School, University of Kent, Kent, CT2 7PE, England

Received date: 2015-10-05

  Revised date: 2016-06-07

  Online published: 2017-05-03

摘要

采用数据包络方法(DEA)评价投资组合效率的前提是有效前沿面为连续凹函数,然而存在基数约束的投资组合有效前沿面可能是非凹且不连续的函数,直接运用DEA方法对其进行评价是不合理的。本文首先给出了存在基数约束的投资组合效率的定义,考虑到其有效前沿面是由有限个连续凹函数分段构成的,提出了一种分段点搜索算法,构建分段DEA模型来评价投资组合效率。仿真分析表明,随着样本量的增加,本文提出的搜索算法得到的样本分段点逼近于真实分段点,分段DEA前沿面逼近于真实前沿面,DEA效率与真实效率相关性逐渐增大,从而说明了本文方法的可行性和有效性。

本文引用格式

周忠宝, 金倩颖, 曾喜梅, 吴乾, 刘文斌 . 存在基数约束的投资组合效率评价方法[J]. 中国管理科学, 2017 , 25(2) : 174 -179 . DOI: 10.16381/j.cnki.issn1003-207x.2017.02.019

Abstract

Using Data Envelopment Analysis (DEA) to evaluate the performance of portfolios requires that the portfolio efficient frontier is continuous and concave. However, the efficient frontier on considering cardinality constraints may not be continuous or concave. Obviously, the direct use of DEA to evaluate the performance of portfolios with cardinality constraints is not reasonable. In this case, the definition of portfolio efficiencyis provided. Since the efficient frontier with cardinality constraints is a piecewise concave function, a numerical searching algorithm is put forward to obtain the sample segment points, which are used to group portfolios under cardinality constraints. The DEA model is then used to evaluate the performance of portfolios in each group. The simulation example indicates that, with the increase of sample size, the sample segment points converge to the real segment points, the DEA frontiers converge to the efficient frontier with cardinality constraints, the correlations between DEA efficiencies and portfolio efficiencies are becoming larger, which all indicate the feasibility and effectiveness of the proposed approach.

参考文献

[1] Morey MR, Morey RC. Mutual fund performance appraisals:a multi-horizon perspective with endogenous benchmarking[J]. Omega, 1999, 27(2):241-58.

[2] Briec W, Kerstens K. Multi-horizon Markowitz portfolio performance appraisals:A general approach[J]. Omega, 2009, 37(1):50-62.

[3] Liu Wenbin, Zhou Zhongbao, Liu Debin,et al. Estimation of portfolio efficiency via DEA[J]. Omega, 2015, 52:107-118.

[4] Markowitz H. Portfolio selection[J]. Journal of Finance, 1952, (4):77-91.

[5] 齐岳,林龙,王治皓.大数据背景下遗传算法在投资组合优化中的效果研究[J].中国管理科学, 2015, (S1):464-469.

[6] 杨湘豫,赵婷.基于Copula的股票型开放式基金的组合风险度量[J].湖南商学院学报, 2010, (3):79-81.

[7] Chang T J, Meade N, Beasley J E, et al. Heuristics for cardinality constrained portfolio optimization[J]. Computers & Operations Research, 2000, 27(13):1271-1302.

[8] Fieldsend J E, Matatko J, Peng M. Cardinality constrained portfolio optimization[C]//Proceedings of International Conference on Intelligent Data Engineering and Automated Learning-IDEAL 2004. Springer Berlin Heidelberg, 2004:788-793.

[9] Anagnostopoulos K P, Mamanis G. The mean-variance cardinality constrained portfolio optimization problem:An experimental evaluation of five multiobjective evolutionary algorithms[J]. Expert Systems with Applications, 2011, 38(11):14208-14217.

[10] Li Duan, Sun Xiading, Wang Jun. Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection[J]. Mathematical Finance, 2006, 16(1):83-101.

[11] Gao Jianjun, Li Duan. Optimal cardinality constrained portfolio selection[J]. Operations Research, 2013, 61(3):745-761.

[12] Zheng Xiaging, Sun Xiaoling, Li Duan, et al. Successive convex approximations to cardinality-constrained convex programs:a piecewise-linear DC approach[J]. Computational Optimization and Applications, 2014, 59(1-2):379-397.

[13] Rankovi? V, Drenovak M, Urosevic B, et al. Mean-univariate GARCH VaR portfolio optimization:Actual portfolio approach[J]. Computers & Operations Research, 2016, 72:83-92.

[14] Tian Ye, Fang S, Deng Zhibin, et al. Cardinality constrained portfolio selection problem:A completely positive programming approach[J]. Journal of Industrial & Management Optimization, 2015, 12(3):1041-1056.

[15] 郝静,张鹏.具有基数约束的多阶段均值-方差投资组合优化[J].中国科学技术大学学报, 2016, (2):156-164.

[16] Chang T J, Yang S C, Chang K J. Portfolio optimization problems in different risk measures using genetic algorithm[J]. Expert Systems with Applications, 2009, 36(7):10529-10537.

[17] Woodside-Oriakhi M, Lucas C, Beasley J E. Heuristic algorithms for the cardinality constrained efficient frontier[J]. European Journal of Operational Research, 2011, 213(3):538-550.

[18] Branda M. Diversification-consistent data envelopment analysis with general deviation measures[J]. European Journal of Operational Research, 2013, 226(3):626-635.

[19] Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978, 2(6):429-444.

[20] Liu JS, Lu LYY, Lu Wenmin, et al. A survey of DEA applications[J]. Omega, 2013, 41(5):893-902.

[21] Murthi B P S, Choi Y K, Desai P. Efficiency of mutual funds and portfolio performance measurement:A non-parametric approach[J]. European Journal of Operational Research, 1997, 98(2):408-418.

[22] Galagadera UA, Silvapulle P. Australian mutual fund performance appraisal using data envelopment analysis[J]. Managerial Finance, 2002, 28(9):60-73.

[23] Daraio C, Simar L. A robust nonparametric approach to evaluate and explain the performance of mutual funds[J]. European Journal of Operational Research, 2006, 175(1):516-542.

[24] Zhao Xiujuan, Wang Shouyang, Lai K K. Mutual funds performance evaluation based on endogenous benchmarks[J]. Expert Systems with Applications, 2011, 38:3663-3670.

[25] Guo Jian, Ma Chaoqun, Zhou Zhongbao. Performance evaluation of investment funds with DEA and higher moments characteristics:Financial engineering perspective[J]. Systems Engineering Procedia, 2012, 3:209-216.

[26] Ding Hui, Zhou Zhongbao, Xiao Helu, et al. Performance evaluation of portfolios with margin requirements[J]. Mathematical Problems in Engineering, 2014:1-8.

[27] 周忠宝,丁慧,马超群,等.考虑交易成本的投资组合效率估计方法[J].中国管理科学, 2015, 23(1):25-33.

[28] 周忠宝,罗咪,肖和录,等.基于网络Index DEA的多阶段投资组合效率评价研究[J].湖南商学院学报, 2016, (2):98-103.

[29] 周忠宝,刘佩,喻怀宁,等.考虑交易成本的多阶段投资组合评价方法研究[J].中国管理科学, 2015, 23(5):1-6.

[30] 杨宏林,崔晨,查勇,等. 价值与动量混合策略DEA多期限资产组合选择及效率评价[J].中国管理科学, 2015, 23(6):57-64.
文章导航

/