主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

基于M-Copula-SV-t模型的高维组合风险度量

展开
  • 1. 北京科技大学东凌经济管理学院, 北京 100083;
    2. 清华大学经济管理学院, 北京 100084;
    3. 香港大学经济和金融学院, 香港

收稿日期: 2015-01-26

  修回日期: 2016-07-22

  网络出版日期: 2017-05-03

基金资助

国家自然科学基金资助项目(71601019,71531013,71402005);北京市优秀人才培养资助项目(2015000020124G044);国家留学基金资助项目(201506465053);中央高校基本科研业务费资助项目(FRF-TP-16-000A3)

High-dimensional Portfolio Risk Measurement Based on M-Copula-SV-t Model

Expand
  • 1. Donlinks School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China;
    2. School ofEconomics and Management, Tsinghua University, Beijing 100084, China;
    3. School of Economics and Finance, The University of Hong Kong, Hong Kong, China

Received date: 2015-01-26

  Revised date: 2016-07-22

  Online published: 2017-05-03

摘要

为解决非线性相关的高维投资组合风险度量问题,本文构建了一个基于M-Copula-SV-t风险度量模型。利用SV-t模型来拟合金融时序的边缘分布,并结合MCMC和Gibbs抽样法对边缘模型进行参数估计;采用由阿基米德族Copula线性组合构成的M-Copula函数联合边缘分布,并通过极大似然估计和BFGS算法对联合模型进行参数估计,进而利用Monte Carlo技术对最优风险投资组合进行风险测度;最后以典型汇率构建四维国际投资组合为例,检验所构建模型的可行性和有效性。实证结果表明,与单一Copula函数相比,由Gumbel Copula、Clayton Copula和Frank Copula线性组合所构成的M-Copula函数能够更为有效地刻画资产收益率的相依结构和尾部特征,建立在M-Copula函数基础上的风险度量结果也更为精确;由模型所计算的最优投资组合权重为外汇组合投资提供了重要参考。

本文引用格式

刘祥东, 范彬, 杨易铭, 刘澄 . 基于M-Copula-SV-t模型的高维组合风险度量[J]. 中国管理科学, 2017 , 25(2) : 1 -9 . DOI: 10.16381/j.cnki.issn1003-207x.2017.02.001

Abstract

The return of financial asset usually has a characteristic of fluctuation clustering with sharp peaks and fat tails, not complying with the normal distribution. Therefore, the nonlinear correlation should be considered when measuring the risk of an investment portfolio. In this respect, copula functions provide a fairly new approach for connecting the marginal distributions of nonlinear series in the high-dimensional risk assessment of portfolio. However, it is noteworthy that two challenging problems exist in this field:one is how to choose or construct an appropriate copula function, the other is how to estimate model parameters. To address these issues, a novel M-Copula-SV-t model is proposed in this paper. Specifically, SV-t model is first employed to fit the marginal distributions of financial time series, where MCMC method with Gibbs sampling are used to estimate marginal parameters; then an M-Copula function consisted of linearly combined Archimedean Copulas is designed to jointly connect these marginals. where joint model parameters are estimated by MLE and BFGS algorithm; afterwards Monte Carlo technique is adopted to simulate optimal portfolios under minimal values of VaR and CVaR. The model feasibility and effectiveness is fruther vertified by taking an example of four exchange rates, where the empirical results indicate that our mixture modeling outperforms other individual Archimedean Copula modeling in dealing with the issue of dimensionality curse, and capturing asymmetry and tailed fatness of portfolio analysis. Therefore, our proposed model contributes to the literature of intra-market portfolio management, and provides valuable suggestions for international investors with respect to short-term decisions.

参考文献

[1] Nelsen R B. An introduction to copulas[M]. New York:Springer, 2006.

[2] Yang Lu, Hamori S. Gold prices and exchange rates:A time-varying copula analysis[J]. Applied Financial Economics, 2014, 24(1):41-50.

[3] Aloui R, Hammoudeh S, Nguyen D K. A time-varying copula approach to oil and stock market dependence:The case of transition economies[J]. Energy Economics, 2013, 39:208-221.

[4] Dajcman S. Tail dependence between Central and Eastern European and major European stock markets:A copula approach[J]. Applied Economics Letters, 2013, 20(17):1567-1573.

[5] Wang K, Chen Y, Huang S. The dynamic dependence between the Chinese market and other international stock markets:A time-varying copula approach[J]. International Review of Economics & Finance, 2011, 20(4):654-664.

[6] Miguel-Angel C, Eduardo P. Modelling dependence in Latin American markets using copula functions[J]. Journal of Emerging Market Finance, 2012, 11(3):231-270.

[7] Chen Wang, Wei Yu, Lang Qiaoqi, et al. Financial market volatility and contagion effect:A copula-multifractal volatility approach[J]. Physica A:Statistical Mechanics and its Applications, 2014, 398:289-300.

[8] Gülp?nar N, Katata K. Modelling oil and gas supply disruption risks using extreme-value theory and copula[J]. Journal of Applied Statistics, 2014, 41(1):2-25.

[9] Wu C, Lin Z. An economic evaluation of stock-bond return comovements with copula-based GARCH models[J]. Quantitative Finance, 2014, 14(7):1283-1296.

[10] 姚登宝,刘晓星,张旭.市场流动性与市场预期的动态相关结构研究——基于ARMA-GJR-GARCH-Copula模型分析[J]. 中国管理科学,2016,24(2):1-10.

[11] 姬强,刘炳越,范英.国际油气价格与汇率动态相依关系研究:基于一种新的时变最优Copula模型[J]. 中国管理科学,2016,24(10):1-9.

[12] Chen Jianli, Liu Zhen, Li Shenghong. Mixed copula model with stochastic correlation for CDO pricing[J]. Economic Modelling, 2014, 40:167-174.

[13] Choro?-Tomczyk B, Karl Härdle W, Overbeck L. Copula dynamics in CDOs[J]. Quantitative Finance, 2014, 14(9):1573-1585.

[14] Liao G, Pan T, Chang L, et al. Portfolio value-at-risk by Bayesian conditional EVT-copula models:Taking an Asian index portfolio for example[J]. Journal of Statistics and Management Systems, 2012, 15(2-3):345-367.

[15] Wang Zongrun, Chen Xiaohong, Jin Yanbo, et al. Estimating risk of foreign exchange portfolio:Using VaR and CVaR based on GARCH-EVT-Copula model[J]. Physica A:Statistical Mechanics and its Applications, 2010, 389(21):4918-4928.

[16] 李战江,迟国泰,党均章.基于copula的追随者银行的企业项目总体风险评价模型[J]. 中国管理科学,2015,23(1):99-110.

[17] 张晨,杨玉,张涛.基于Copula模型的商业银行碳金融市场风险整合度量[J]. 中国管理科学,2015,23(4):61-9.

[18] 叶五一,李潇颖,缪柏其.基于藤Copula方法的持续期自相依结构估计及预测[J]. 中国管理科学,2015,23(11):29-38.

[19] 林宇,陈王,王一鸣,等.典型事实、混合Copula函数与金融市场相依结构研究[J]. 中国管理科学,2015,23(4):20-9.

[20] 周孝华,张保帅,董耀武.基于Copula-SV-GPD模型的投资组合风险度量[J]. 管理科学学报,2012,15(12):70-78.

[21] 马锋,魏宇,黄登仕.基于vine copula方法的股市组合动态VaR测度及预测模型研究[J]. 系统工程理论与实践,2015,35(1):26-36.

[22] 苟红军,陈迅,花拥军.基于GARCH-EVT-COPULA模型的外汇投资组合风险度量研究[J]. 管理工程学报,2015,(1):183-193.

[23] Hu Ling. Dependence patterns across financial markets:A mixed copula approach[J]. AppliedFinancial Economics, 2006, 16(10):717-729.

[24] 吴吉林,陈刚,黄辰.中国A, B, H股市间尾部相依性的趋势研究——基于多机制平滑转换混合Copula模型的实证分析[J]. 管理科学学报,2015,18(2):50-65.

[25] Sklar M. Fonctions de répartition à n dimensions et leurs marges[M].Paris:Institute of Statistics of the Université Paris, 1959.

[26] Clark P K. A subordinated stochastic process model with finite variance for speculative prices[J]. Econometrica, 1973, 41(1):135-155.

[27] Taylor S J. Modelling financial time series[M]. New York:Wiley, 1986.

[28] Hull J, White A. The pricing of options on assets with stochastic volatilities[J]. The Journal of Finance, 1987, 42(2):281-300.

[29] Harvey A, Ruiz E, Shephard N. Multivariate stochastic variance models[J]. The Review of Economic Studies, 1994, 61(2):247-264.

[30] Jacquier E, Polson N G, Rossi P E. Bayesian analysis of stochastic volatility models[J]. Journal of Business & Economic Statistics, 2002, 20(1):69-87.

[31] Kim S, Shephard N, Chib S. Stochastic volatility:Likelihood inference and comparison with ARCH models[J]. The Review of Economic Studies, 1998, 65(3):361-393.

[32] Meyer R, Yu Jun. BUGS for a Bayesian analysis of stochastic volatility models[J]. The Econometrics Journal, 2000, 3(2):198-215.

[33] Rockafellar R T, Uryasev S. Conditional value-at-risk for general loss distributions[J]. Journal of Banking & Finance, 2002, 26(7):1443-1471.

[34] Kupiec P H. Techniques for verifying the accuracy of risk measurement models[J]. Journal of Derivatives, 1995, 3(2):173-184.
文章导航

/