主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

半参数alpha策略的反转效应研究

展开
  • 1. 西北大学经济管理学院, 陕西 西安 710127;
    2. 海财经大学统计与管理学院, 上海 200433;
    3. 中国科学院数学与系统科学研究院, 北京 100190

收稿日期: 2015-11-23

  修回日期: 2016-05-03

  网络出版日期: 2017-03-07

基金资助

国家自然科学基金重点项目(71331006,91546202);国家自然科学基金资助项目(71271128);中国科学院重点实验室(2008DP173182);国家数学与交叉科学中心(2008DP173182);长江学者和教育部创新团队发展计划(IRT13077);上海财经大学创新团队支持计划(IR TSHUFE13122402);国家自然科学基金青年项目(11601424);教育部青年基金资助项目(15YJC910009);博士后科学基金面上项目(2015M580867);博士后科学基金特别资助项目(2016T90940);西北大学自科基金资助项目(14NW31)

Contrarian Effect of Semi-Parametric Alpha Strategy

Expand
  • 1. School of Economics and Management, Northwest University, Xian, China;
    2. School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, China;
    3. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China

Received date: 2015-11-23

  Revised date: 2016-05-03

  Online published: 2017-03-07

摘要

文章考虑风险与收益的时变性,提出了变系数市场模型以便更好的捕获市场风险变化因素,建立了半参数alpha策略模型,并以沪深300指数及其成分股为研究对象,利用该半参数模型构建可以取得alpha策略反转效应的股票组合,文章还对半参数alpha策略的反转效应的持有期长短、股票稳定性对反转效应的影响进行了研究。实证结果表明所提出的模型可以作为较为理想的预测工具,同时也为提高投资收益和管理投资风险提供了一定的理论参考。

本文引用格式

张莉, 邓礼英, 周勇 . 半参数alpha策略的反转效应研究[J]. 中国管理科学, 2016 , 24(12) : 30 -38 . DOI: 10.16381/j.cnki.issn1003-207x.2016.12.004

Abstract

In this article, a semi-parametric alpha strategy model is proposed. The benefit of the proposed model is that the time-varying coefficient can explain the time point risk rather than the risk in a period of time. The local least square method is used to estimate time-varying coefficient and the estimate of alpha is easily derived by solving an estimating equation. Based on the semi-parametric model, the 30 low-ranking stock portfolios of alpha value are selected to observe the contrarian effect. It's found that the stock portfolio is better than market return and gain premium, showing the contrarian effect. The influence of the holding length and the stability of a stock on contrarian effect are also studied, and it's found that the selected stock portfolio performs better than CSI 300 index and its constituent stock. The empirical analysis proves that the semiparametric model can serve as a comparatively better predicting model, and our results can provide some theoretical references for managing risk and improving return.

参考文献

[1] Fama E F. The behavior of stock market prices[J]. Journal of Business, 1965, 38(1): 34-105.

[2] Fama E F. Efficient capital market: A review of theory and empirical work[J]. The Journal of Finance, 1970, 25(2): 383-417.

[3] De Bondt W F M, Thaler R. Does the stock market overreact?[J]. The Journal of Finance,1985, 40(3): 793-805.

[4] Jegadeesh N, Titman S. Returns to buying winners and selling losers: Implications for stock market efficiency[J]. The Journal of Finance, 1993, 48(1), 65-91.

[5] 程希骏, 吴振祥, 周晖. 中国股市ST板块弱有效性检验[J]. 中国管理科学, 2003, 11(4): 1-4.

[6] 吴振翔, 陈敏. 中国股票市场弱有效性的统计套利检验[J]. 系统工程理论与实践, 2007, 27(2): 92-98.

[7] 张林, 李荣钧, 刘小龙. 基于小波领袖多重分形分析法的股市有效性及风险检测[J]. 中国管理科学, 2014, 22(6): 17-26.

[8] Akarim Y, Sevim S. The impact of mean reversion model on portfolio investment strategies: Empirical evidence from emerging markets[J]. Economic Modelling, 2013, 31, 453-459.

[9] Rios A, Garcia R. Assessing and valuing the nonlinear structure of hedge fund returns[J]. Journal of Applied Econometrics, 2011, 26(2): 193-212.

[10] Boussaidi R. An empirical essay to explain the contrarian profits in the Tunisian stock market: Behavioral approach vs. rational approach[J]. International Journal of Economics and Finance, 2015, 7(12):11-28.

[11] 李少育. 稳健性偏好、惯性效应与中国股市的投资策略研究[J]. 经济学季刊, 2013, 12(2): 453-474.

[12] 翟爱梅, 罗伟卿. 惯性反转效应是市场的偶然还是普遍规律[J]. 统计研究, 2013, 30(12): 100-109.

[13] 田利辉, 王冠英, 谭德凯. 反转效应与资产定价: 历史收益率如何影响现在[J]. 金融研究, 2014, (10): 177-192.

[14] 彭叠峰, 饶育蕾, 雷湘媛. 基于注意力传染机制的股市动量与反转模型研究[J]. 中国管理科学, 2015, 23(5): 32-40.

[15] 李宏, 王刚, 路磊. 股票流动性能够解释收益反转之谜吗?[J]. 管理科学学报, 2016, 19(8): 84-101.

[16] Shi Huailong, Jiang Zhiqiang, Zhou Weixing. Profitability of contrarian strategies in the Chinese stock market[J]. PLoS ONE, 2015,10(9):1-22.
文章导航

/