在供应商-制造商二级供应链中,制造商作为领导者,采用一个战略供应商和一个备份供应商。有两种期权执行模式,一种是需求未知情况下提前向备份供应商订货的推式订货模式,另一种是获知需求后再向备份供应商订货的推式与拉式相结合的订货模式。证明了所建模型均为凸规划,并利用Karush-Kuhn-Tucker条件求得备份供应商的能力预定量、战略供应商订货量以及最优利润的表达式,得出了是否采用备份供应商的临界值。研究结果表明:推式模式下战略供应商的订货量较大,推拉结合模式下备份供应商的能力预定量较大,推拉结合模式下制造商的利润较大;随着战略供应商可靠性系数的增大,推式模式下首先放弃备份供应商的使用;当战略供应商的采购成本、备份供应商的期权执行成本和缺货成本较大,且残值以及可靠性系数较小时,推拉结合模式相对于完全推式的效果更加明显。
During the last decade, to identify and mitigate supply disruptions is a topic that receives substantial management attention. Both diversifying supply sourcing including dual-sourcing and adding a backup supplier are logic ways to manage the risk of supply disruptions. There are two options execution modes. One is N mode that pushes ordering patterns, which means that the retailer orders from the backup supplier in advance under uncertain demand circumstances, the other is Y mode, push & pull ordering patterns, which means that the retailer doesn't order from backup suppliers until he knows the demand circumstance. It's successfully proved that the model is a convex programming through two options implementation strategy adopted by the retailer, and using Karush-Kuhn-Tucker conditions, a predetermined amount of backup suppliers, the closed expressions of optimal order quantity and profit expression can also be obtained. The threshold of using a backup supplier is given. By theorems and further numerical example, it can be concluded:Optimal profits is larger than primary supplier's while primary supplier has larger order quantities under N mode, under Y mode, backup supplier's capabilities predetermined amount. The impacts of model parameters on the ordering quantity from primary supplier are a little different based on the relative size of ce and c because of the execution of options. The capacity utilization of backup suppliers is highest when ce<c but lowest when ce>c under N mode, and it is in the middle level under Y mode. The retailer can obtain more profits under Y mode relative to under N mode as g, c and ce increase, or s and γ decrease.
[1] Yu Gang, Qi Xiangtong. Disruption management:Framework, models and application[M].Fitchburg, MA:World Scientific Publishing Company, 2004.
[2] 傅克俊, 胡祥培, 王旭坪. 供应链系统中的应急策略与模型[J]. 中国软科学, 2007(5):119-124.
[3] 姚杰, 计雷, 池宏. 突发事件应急管理中的动态博弈分析[J]. 管理评论, 2005,17(3):46-51.
[4] 刘德海, 于倩, 马晓南. 基于最小偏差组合权重的突发事件应急能力评价模型[J]. 中国管理科学, 2014,22(11):79-86.
[5] 萧海东, 陈宁. 基于知识库的应急领域脆弱性指标体系研究[J]. 中国管理科学, 2014, 22(7):76-81.
[6] Tomlin B. On the value of mitigation and contingency strategies for managing supply chain disruption risks[J]. Management Science, 2006, 52(5):639-657.
[7] 李新军,季建华,王淑云. 供应中断情况下基于双源采购的供应链协调与优化[J]. 管理工程学报, 2014,28(3):141-147.
[8] Tang S Y, Gurnani H, Gupta D. Managing disruption in decentralized supply chains with endogenous supply processreliability[J]. Production and Operations Management, 2014, 23(7):1198-1211.
[9] Kim S H,Tomlin B. Strategic failure prevention and recovery capacity investments[J]. Management Science, 2013, 59(7):1631-1649.
[10] Sting F J, Huchzermeier A. Ensuring responsive capacity:How to contract with backup suppliers[J]. European Journal of Operational Research, 2010, 207(2):725-735.
[11] 盛方正,季建华. 最优期权合同组合的充要条件及采购方法[J]. 系统管理学报, 2008,17(3):307-311.
[12] 赵金实, 王浣尘, 郑晓涛. 期权定价市场化情况下逆向主导型供应链协调机制研究[J].管理工程学报2009,23(2):111-115.
[13] Cachon G P, Zhang Fuqiang. Procuring fast delivery:Sole sourcing with information asymmetry[J]. Management Science, 2006, 52(6):881-896.
[14] Kleindorfer P R, Wu D J. Integrating long and short term contracting via business to business exchange for capital intensive industries[J]. Management Science, 2003, 49(11):1597-1615.
[15] Victor M, David S. A portfolio approach to procurement contracts[J]. Production and Operation Management, 2005, 14(1):90-114.
[16] Wu D J, Kleindorfer P, Zhang J E. Optimal bidding and contracting strategies for capital intensive goods[J]. European Journal of Operational Research, 2002, 137(3):657-676.
[17] 丁斌, 桂斌. 基于合作博弈的预付条件下应急物资库存策略[J]. 运筹与管理, 2011,20(3):60-65.
[18] 田军, 葛永玲, 侯丛丛. 政府主导的基于实物期权契约的应急物资采购模型, 系统工程理论与实践, 2014,34(10):2582-2590.