主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

基于VIKOR和诱导广义直觉梯形模糊Choquet积分算子的多属性群决策方法

展开
  • 1. 合肥工业大学管理学院, 安徽 合肥 230009;
    2. 过程优化与智能决策教育部重点实验室, 安徽 合肥 230009

收稿日期: 2014-04-16

  修回日期: 2014-12-17

  网络出版日期: 2016-07-05

基金资助

国家自然科学基金面上重点资助项目(71331002);国家自然科学基金资助面上项目(71271072);教育部高等学校博士点基金资助项目(20110111110006);中央高校基本科研业务费专项资金资助项目(JZ2015HGBZ0468)

Multi-Attribute Group Decision Making Based On Extend VIKOR and Induced Generalized Intuitionistic Trapezoidal Fuzzy Choquet Integral

Expand
  • 1. School of Management, Hefei University of Technology, Hefei 230009, China;
    2. Key Laboratory of Process Optimization and Intelligent Decision-making, Ministry of Education, Hefei 230009, China

Received date: 2014-04-16

  Revised date: 2014-12-17

  Online published: 2016-07-05

摘要

针对属性值为直觉梯形模糊数,决策者间和属性间存在相互关联的多属性群决策问题,引入模糊测度和Choquet积分的概念,在直觉梯形模糊数的运算法则基础上构建了诱导型广义直觉梯形模糊choquet积分平均(IG-ITFCA)算子和诱导型广义直觉梯形模糊choquet积分几何(IG-ITFCG)算子,探讨上述算子的若干性质及一些特例,进而提出了基于诱导型广义直觉梯形模糊Choquet积分算子和多准则妥协优化解(VIKOR)的直觉梯形模糊多属性群决策方法。实例分析验证该方法的有效性和合理性。

本文引用格式

赵树平, 梁昌勇, 罗大伟 . 基于VIKOR和诱导广义直觉梯形模糊Choquet积分算子的多属性群决策方法[J]. 中国管理科学, 2016 , 24(6) : 132 -142 . DOI: 10.16381/j.cnki.issn1003-207x.2016.06.016

Abstract

With regard to multi-attribute group decision making problem with conflicting attributes and interdependent subjective preference of decision makers in a fuzzy environment where preferences of decision makers with respect to attributes are represented by intuitionistic trapezoidal fuzzy numbers, are investigated. Combing the definition of fuzzy measure and induced aggregation operator, some new aggregation operators based on Choquet integral are proposed, such as induced generalized intuitionistic trapezoidal fuzzy Choquet integral average(IG-ITFCA)operator and induced generalized intuitionistic trapezoidal fuzzy Choquet integral geometric(IG-ITFCG)operator, some desirable properties of these aggregation operators are investigated in detail. The extended VIKOR decision procedure based on the proposed operator is developed for solving the multi-attribute group decision making problem where the interactive attributes weight is measured by Shapley value. An illustrative example is given for demonstrating the applicability of the proposed decision procedure for solving the multi-attribute group decision making problem in intuitionistic trapezoidal fuzzy environment.

参考文献

[1] Zadeh L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.

[2] Atanassov K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1):87-96.

[3] 梁昌勇, 张恩桥, 戚筱雯, 等. 一种评价信息不完全的混合型多属性群决策方法[J]. 中国管理科学, 2009, 17(4):126-132.

[4] Atanassov K, Gargov G. Interval valued intuitionistic fuzzy sets.[J]. Fuzzy Sets and Systems, 1989, 31(3):343-349.

[5] Atanassov K T. Operators over interval valued intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1994, 64(2):159-174.

[6] Xu Zeshui. Intuitionistic preference relations and their application in group decision making[J]. Information Sciences, 2007, 177(11):2363-2379.

[7] Li Dengfeng. Linear programming method for MADM with interval-valued intuitionistic fuzzy sets[J]. Expert Systems with Applications, 2010, 37(8):5939-5945.

[8] Li Dengfeng, Chen Guohong, Huang Zhigang. Linear programming method for multiattribute group decision making using IF sets[J]. Information Sciences, 2010, 180(9):1591-1609.

[9] Wei Guiwu. Some induced geometric aggregation operators with intuitionistic fuzzy information and their application to group decision making[J]. Applied Soft Computing, 2010, 10(2):423-431.

[10] Xu Zeshui. Intuitionistic fuzzy aggregation operators[J]. IEEE Transactions on Fuzzy Systems, 2008, 14(6):1179-1187.

[11] Xu Zeshui, Yager R R. Some geometric aggregation operators based on intuitionistic fuzzy sets[J]. International Journal of General Systems, 2006, 35(4):417-433.

[12] Xu Zeshui. Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making[J]. Control and decision, 2007, 22(2):215-219.

[13] Xu Zeshui, Chen Jian. Approach to group decision making based on interval-valued intuitionistic judgment matrices[J]. Systems Engineering-Theory & Practice, 2007, 27(4):126-133.

[14] 徐选华, 万奇锋, 陈晓红, 等. 一种基于区间直觉梯形模糊数偏好的大群体决策冲突测度研究[J]. 中国管理科学, 2014, 22(8):115-122.

[15] Shu M H, Cheng C H, Chang Jingrong. Using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly[J]. Microelectronics Reliability, 2006, 46(12):2139-2148.

[16] 王坚强, 张忠. 基于直觉模糊数的信息不完全的多准则规划方法[J]. 控制与决策, 2008, 23(10):1145-1148.

[17] Wei Guiwu. Some arithmetic aggregation operators with intuitionistic trapezoidal fuzzy numbers and their application to group decision making[J]. Journal of Computers, 2010, 5(3):345-351.

[18] Wu Jian, Cao Qingwei. Same families of geometric aggregation operators with intuitionistic trapezoidal fuzzy numbers[J]. Applied Mathematical Modelling, 2013, 37(1-2):318-327.

[19] Wang Jianqiang, Zhang Zhong. Aggregation operators on intuitionistic trapezoidal fuzzy number and its application to multi-criteria decision making problems[J]. Journal of Systems Engineering and Electronics, 2009, 20(2):321-326.

[20] Wang Zhenyuan, Klir G J. Fuzzy measure theory[M]. Verlag,US:Springer, 1992.

[21] Tan Chunqiao, Chen Xiaohong. Intuitionistic fuzzy Choquet integral operator for multi-criteria decision making[J]. Expert Systems with Applications, 2010, 37(1):149-157.

[22] Xu Zeshui. Choquet integrals of weighted intuitionistic fuzzy information[J]. Information Sciences, 2010, 180(5):726-736.

[23] Tan Chunqiao. A multi-criteria interval-valued intuitionistic fuzzy group decision making with Choquet integral-based TOPSIS[J]. Expert Systems with Applications, 2011, 38(4):3023-3033.

[24] Tan Chunqiao. Generalized intuitionistic fuzzy geometric aggregation operator and its application to multi-criteria group decision making[J]. Soft Computing, 2011, 15(5):867-876.

[25] 王坚强, 聂荣荣. 准则关联的直觉模糊多准则决策方法[J]. 控制与决策, 2011, 26(9):1348-1352.

[26] 万树平, 董九英. 基于三角直觉模糊数Choquet积分算子的多属性决策方法[J]. 中国管理科学, 2014, 22(3):121-129.

[27] Opricovic S. Multicriteria optimization of civil engineering systems[J]. Faculty of Civil Engineering, Belgrade, 1998, 2(1):5-21.

[28] Opricovic S, Tzeng G H. Extended VIKOR method in comparison with outranking methods[J]. European Journal of Operational Research, 2007, 178(2):514-529.

[29] Sayadi M K, Heydari M, Shahanaghi K. Extension of VIKOR method for decision making problem with interval numbers[J]. Applied Mathematical Modelling, 2009, 33(5):2257-2262.

[30] Sanayei A, Farid M S, Yazdankhah A. Group decision making process for supplier selection with VIKOR under fuzzy environment[J]. Expert Systems with Applications, 2010, 37(1):24-30.

[31] Devi K. Extension of VIKOR method in intuitionistic fuzzy environment for robot selection[J]. Expert Systems with Applications, 2011, 38(11):14163-14168.

[32] Park J H, Cho H J, Kwun Y C. Extension of the VIKOR method for group decision making with interval-valued intuitionistic fuzzy information[J]. Fuzzy Optimization and Decision Making, 2011, 10(3):233-253.

[33] Liou J JH, Tsai C Y, Lin R H, et al. A modified VIKOR multiple-criteria decision method for improving domestic airlines service quality[J]. Journal of Air Transport Management, 2011, 17(2):57-61.

[34] Yager R R, Filev D P. Induced ordered weighted averaging operators[J]. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on, 1999, 29(2):141-150.

[35] Choquet G. Theory of capacities[J]. Annales de l'institut Fourier, 1953, 5:131-295.

[36] Wang Jianqiang, Zhang Zhong. Multi-criteria decision-making method with incomplete certain information based on intuitionistic fuzzy number[J]. Control and decision, 2009, 24(2):226-230.

[37] 王坚强, 聂荣荣. 基于直觉梯形模糊信息的多准则群决策方法[J]. 系统工程理论与实践, 2012, 32(8):1747-1753.

[38] Yager R R. Induced aggregation operators[J]. Fuzzy Sets and Systems, 2003, 137(1):59-69.

[39] 谭春桥, 马本江. 基于语言Choquet积分算子的多属性群决策方法[J]. 系统工程与电子技术, 2010, 32(11):2352-2355.

[40] 吴兴颖. 属性间具有相互关系的直觉梯形模糊多属性决策方法研究[D]. 济南:山东财经大学, 2013.

[41] Zhang Zhiming, Tian Dazeng, Li Kai. Parameterized intuitionistic fuzzy trapezoidal operators and their application to multiple attribute group decision making[J]. Journal of Intelligent and Fuzzy Systems, 2014, 26(3):1401-1431.

[42] Shapley L S. A value for n-person games in contributions to the theory of games[M]. Princeton; Princeton University Press, 1953.

[43] 李喜华. 基于累积前景理论和Choquet积分的直觉梯形模糊多属性决策[J]. 计算机应用研究, 2013, 30(8):2422-2425.

[44] Liu Aifang. Topsis method for multiple attribute decision making under trapezoidal intuitionistic fuzzy environment[J]. Journal of Intelligent and Fuzzy Systems, 2014, 26(5):2403-2409.
文章导航

/