主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

网上拍卖销售与逆向拍卖采购下的库存管理

展开
  • 1. 湘潭大学商学院, 湖南湘潭 411105;
    2. 湘潭大学数学与计算科学学院, 湖南湘潭 411105
刘树人(1972-),男(汉族),湘潭大学商学院博士,副教授,研究方向:运营与供应链管理、拍卖理论.

收稿日期: 2013-08-15

  修回日期: 2014-09-23

  网络出版日期: 2015-12-01

基金资助

国家自然科学基金资助项目(71401150)

Inventory Management with Selling by Internet Auctions and Purchasing by Reverse Auctions

Expand
  • 1. Business School, Xiangtan University, Xiangtan 411105, China;
    2. School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China

Received date: 2013-08-15

  Revised date: 2014-09-23

  Online published: 2015-12-01

摘要

以电子商务为背景研究网上拍卖销售与逆向拍卖采购下的库存管理。在该问题中,零售商一方面利用网上拍卖销售产品,另一方面利用逆向拍卖进行采购。对于单阶段情形,证明网上拍卖下零售商的期望收益函数是采购量的严格递增的凹函数,从而得到零售商的最优采购策略和供应商的最优投标策略。对于多阶段情形,利用马尔可夫决策过程理论建立该问题的最优控制模型,得到零售商的最优采购策略和供应商的贝叶斯-纳什均衡投标策略均与基本库存策略相类似。

本文引用格式

刘树人, 唐沛, 黄颖娜 . 网上拍卖销售与逆向拍卖采购下的库存管理[J]. 中国管理科学, 2015 , 23(11) : 62 -69 . DOI: 10.16381/j.cnki.issn1003-207x.2015.11.008

Abstract

In this paper, an inventory management with selling by Internet auctions and purchasing by reverse auctions is studied in the context of e-commerce. The considered inventory management has the following two characteristics. One is that the retailer sells products by Internet auctions, another one is that the retailer makes procurement management by reverse auctions. For the single-period case, it is shown that the retailer's expected revenue is a strictly increasing and concave function of the purchased quantity under Internet auctions, leading to the retailer's optimal procurement strategy and the suppliers' optimal bidding strategy. For the multi-period case, the optimal control model is first constructed for the retailer by using Markov decision processes. Then, the retailer's optimal procurement strategy is obtained and the suppliers' Bayesian-Nash equilibrium bidding strategies are similar to the base-stock policy. These results not only show the effect of auction mechanism on optimal procurement strategy for the retailer, but also provide an important reference for managers to manage inventory under selling by Internet auctions and purchasing by reverse auctions.

参考文献

[1] Tunay I T, Wu Qiong. Multiple sourcing and procurement process selection with bidding events[J]. Management Science, 2009, 55(5):763-780.

[2] van Ryzin G, Vulcano G. Optimal auctioning and ordering in an infinite horizon inventory-pricing system[J]. Operations Research, 2004, 52(3):346-367.

[3] Huh W T, Janakiraman G. Inventory management with auctions and other sales channels:Optimality of (s, S) policies[J]. Management Science, 2008, 54(1):139-150.

[4] Huh W T, Janakiraman G. (s, S) Optimality in joint inventory-pricing control:An alternative approach[J]. Operations Research, 2008, 56(3):783-790.

[5] Liu Shuren, Hu Qiying, Xu Yifan. Optimal inventory control with fixed ordering cost for selling by Internet auctions[J]. Journal of Industrial and Management Optimization, 2012, 8(1):19-40.

[6] Chen Fangruo.Auctioning supply contracts[J]. Management Science, 2007, 53(10):1562-1576.

[7] Li Cuihong, Scheller-Wolf A. Push or pull? Auctioning supply contracts[J]. Production and Operations Management, 2011, 20(2):198-213.

[8] Gallien J, Wein L M. A smart market for industrial procurement with capacity constraints[J]. Management Science, 2005, 51(1):76-91.

[9] Chaturvedi A, Martinez-de-Albeniz V. Optimal procurement design in the presence of supply risk[J]. Manufaturing and Service Operations Management, 2011, 13(2):227-243.

[10] 姚升保.基于幂效用函数的多属性英式拍卖研究[J].中国管理科学,2013,21(6):132-138.

[11] Pinker E J, Seidmann A, Vakrat Y. Using bid data for the management of sequential, multi-unit, online auctions with uniformly distributed bidder valuations[J]. European Journal of Operational Research, 2010,202(2):574-583.

[12] David H A. Order statistics[M]. 2nd ed. New York:John Wiley and Sons, 1981.

[13] Porteus E L. Foundations of stochastic inventory theory[M]. California:Stanford, Stanford University Press, 2002.
文章导航

/