主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

面向灾害应急物资需求的灰色异构数据预测建模方法

展开
  • 1. 重庆工商大学商务策划学院, 重庆 400067;
    2. 电子科技大学经济与管理学院, 四川 成都 611731;
    3. 南京航空航天大学经济与管理学院, 江苏 南京 210016;
    4. 重庆工商大学装备系统服役健康保障国际联合研究中心, 重庆 400067
曾波(1975-),男(汉族),四川威远人,重庆工商大学商务策划学院教授,工学博士,管理学博士后,研究方向:系统预测、决策与评价.

收稿日期: 2013-07-12

  修回日期: 2014-03-04

  网络出版日期: 2015-08-19

基金资助

国家自然科学基金资助项目(71271226,71301060);中国博士后科学基金资助项目(2014M560712);中国博士后科学基金特别资助项目(2015T80975);重庆市基础与前沿研究计划项目(cstc2014jcyjA00024);教育部人文社会科学研究一般项目(14YJAZH033);重庆高校创新团队计划(KJTD201313);重庆市高等学校教学改革研究项目(1202010);重庆市教委科学技术研究项目资助(KJ120706)

Prediction Modeling Method of Grey Isomerism Data for Calamity Emergency Material Demand

Expand
  • 1. School of Business Planning, Chongqing Technology and Business University, Chongqing 400067, China;
    2. School of Management and Economics, University of Electrcnic Science and Tehnology, Chengdu 611731, China;
    3. College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    4. Research Center of Sustem Health Maintenance, Chongqing Technology and University, Chongqing 400067, China

Received date: 2013-07-12

  Revised date: 2014-03-04

  Online published: 2015-08-19

摘要

多源信息集结对提高自然灾害环境下统计数据可信度具有重要作用,但信息渠道的多源性极易导致集结信息数据类型不一致、不兼容,形成灰色异构数据序列。本文应用灰色系统建模技术对灰色异构数据预测建模方法展开研究,首先,基于"核"和"灰度"对灰色异构数据进行规范化处理;然后,建立灰色异构数据"核"序列的DGM(1,1)模型,并以"核"为基础,根据灰度不减公理,以灰色异构数据序列中最大灰度值所对应的信息域作为预测结果之信息域,推导并构建了灰色异构数据预测模型;最后,将该模型应用于某地震帐篷需求量的预测。本文研究成果将传统灰色模拟及预测模型建模对象从"同质数据"拓展至"异构数据",对丰富与完善灰色模拟及预测模型理论体系,提高自然灾害救援效率具有积极意义。

本文引用格式

曾波, 孟伟, 刘思峰, 李川, 崔杰 . 面向灾害应急物资需求的灰色异构数据预测建模方法[J]. 中国管理科学, 2015 , 23(8) : 84 -91 . DOI: 10.16381/j.cnki.issn1003-207x.2015.08.010

Abstract

Multiple-source information aggregation is a significant way to improve the reliability of the statistical data in the environment of natural disasters. However, the diversity of information sources often cause the inconformity and incompatible types of the aggregation information data which thereby produce isomerism data sequences that belong to different types of data. The modeling technology of grey system is applied to study the modeling method for grey isomerism data. First, the grey heterogeneous data is normalized based on the "Kernel" and "degree of greyness"; then a (1,1) DGM model of grey heterogeneous data "Kernel" sequence is established. According to the "Kernel" and the axiom of grey degree not-reducing, a grey prediction model of heterogeneous data is built by using the information field to which the maximum degree of greyness in the grey heterogeneous data sequence corresponding as the information field of the prediction results, Finally, the model is applied to forecast the demand volume of tent in the ya'an earthquake. The research results of the project will expand the traditional modeling objects of gray forecasting model from homogeneous data to heterogeneous data and has a vital significance for enriching and perfecting the grey prediction model theory system, and improving the efficiency of natural disasters and rescue.

参考文献

[1] Ozdamar L Ekinci E, Kuecuekyazici B. Emergency logistics planning in natural disasters[J]. Annals of Operations Research, 2004, 24(129): 217-245.

[2] 曾波, 刘思峰, 方志耕,等. 灰色组合预测模型及其应用[J]. 中国管理科学, 2009, 17(5): 150-155.

[3] Timofeeva G A, Timofeev N A. Forecasting credit portfolio components with a Markov chain model[J].Automation and Remote Control, 2012, 73(4): 637-651.

[4] 张冬青,韩玉兵,宁宣熙.基于小波域隐马尔可夫模型的时间序列分析——平滑、插值和预测[J].中国管理科学,2008,16(2):122-127.

[5] Liu Sifeng, Lin Yi. Grey systems theory and applications [M]. Berlin Heidelberg: Springer-Verlag, 2010.

[6] Deng Julong. Introduction to grey system theory [J].The Journal of Grey System (UK), 1989, 1(1):1-24.

[7] Zeng Bo, Liu Sifeng, Xie Naiming. Prediction model of interval grey number based on DGM (1, 1) [J]. Journal of Systems Engineering and Electronics, 2010, 21(4): 598-603.

[8] 曾波,刘思峰.一种基于区间灰数几何特征的灰数预测模型[J].系统工程学报, 2011, 26(2): 122-126.

[9] 曾波,刘思峰, 孟伟. 基于核和面积的离散灰数预测模型[J]. 控制与决策, 2011, 26(9): 1421-1424.

[10] Liu Sifeng, Jeffrey, Forrest J,et al. A brief introduction to grey systems theory [J]. Grey Systems: Theory and Application, 2(2):89-104.

[11] 刘思峰, 党耀国, 方志耕,等. 灰色系统理论及其应用[M]第五版. 北京: 科学出版社, 2010.

[12] Deng Julong.Whitening definitions in grey system theory [J].The Journal of Grey System, 1998, 10(2): 81-86.

[13] Liu Sifeng. On measure of grey information[J]. The Journal of Grey System, 1995, 7(2): 97-101.

[14] 刘思峰,方志耕,谢乃明.基于核和灰度的区间灰数运算法则[J].系统工程与电子技术,2010,32(2): 313-316.

[15] Zeng Bo, Liu Sifeng. Research on Kernel's calculation of interval grey number based on barycenter approach[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2013, 30(2): 216-220.

[16] You Zhongsheng, Zeng Bo. Calculation method's extension of grey degree based on the area method [J]. The Journal of Grey System, 2012, 24(1): 89-94.

[17] 杨德岭, 刘思峰, 曾波.基于核和信息域的区间灰数Verhulst 模型[J]. 控制与决策, 2013, 28(2): 264-268.

[18] 谢乃明,刘思峰. 离散GM(1,1)模型与灰色预测模型建模机理[J].系统工程理论与实践,2005, 25(1): 93-98.
文章导航

/