主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

竞争环境下的轴-辐式集装箱海运网络设计问题

展开
  • 大连海事大学交通运输管理学院, 辽宁 大连 116026
赵宇哲(1983-),男(汉族),黑龙江大庆人,大连海事大学交通运输管理学院,讲师,博士,研究方向:港口规划与管理、发展决策与管理.

收稿日期: 2013-11-21

  修回日期: 2014-02-27

  网络出版日期: 2015-07-22

基金资助

长江学者和创新团队发展计划资助项目(IRT13048); 国家自然科学基金资助项目(71273037,71403035); 辽宁省高校创新团队支持计划资助项目(LT2013011); 交通运输部交通软科学项目(2013-322-225-240); 中央高校基本科研业务费专项资金资助项目(3132013080, 3132015218)

Hub-and-spoke Container Shipping Network Design in a Competitive Environment

Expand
  • College of Transportation Management, Dalian Maritime University, Dalian 116026, China

Received date: 2013-11-21

  Revised date: 2014-02-27

  Online published: 2015-07-22

摘要

针对航运企业的重组与全球扩张引起的竞争问题,提出了竞争环境下的轴-辐式集装箱海运网络设计模型。模型采用基于路径的变量作为决策变量,利用离散函数来表示航运企业与航运联盟的竞争可吸引的流量(或客户),目的在于通过设计混合轴-辐式集装箱海运网络,实现以更低的服务成本和更短的服务时间最大化可吸引的流量,建立了枢纽港口数量约束、航线连接约束、航线中转约束、流量竞争约束等,运用多点交叉遗传算法进行求解,最后结合亚欧航线的集装箱海运市场进行实例分析,对考虑客户需求多样性与航运联盟对策下的轴-辐式集装箱海运网络进行设计,并验证了算法的计算效果。

本文引用格式

赵宇哲 . 竞争环境下的轴-辐式集装箱海运网络设计问题[J]. 中国管理科学, 2015 , 23(7) : 103 -112 . DOI: 10.16381/j.cnki.issn1003-207x.2015.07.013

Abstract

A novel mixed integer linear programming mathematical model for the hub-and-spoke container shipping network design in a competitive environment is proposed for the competition problem caused by reorganization and global expansion of container shipping liners. Path-based formulations are adopt as decision variables in the model. A discretized attraction function is introduced to indicate the number of network traffic (customers) of the container shipping alliance that can be attracted to the newcomer container shipping liners through competition. The aim of the model is to maximize the number of network traffic attracted which depends on lower transportation cost and shorter service time - by designing its mixed hub-and-spoke container shipping network. There are 13 constraints including the number of hub ports, routes connection, route transition and network traffic competition to ensure competition factors and network design factors the model should consider. As it is a NP-hard problem, a multi-point crossover genetic algorithm is given to solve the problem. By comparing the genetic algorithm allowed infeasible solutions, the results show that the multi-point crossover genetic algorithm which can avoid infeasible solutions has a better solution. Finally, the example of a container shipping market of Asia-Europe routes is analyzed, and the major data sources are obtained from CI (Containerization International)-Online, 100allin, Seagle and BLM-Shipping. Hub-and-spoke container shipping networks are designed for the cases of the various demands of customers and the countermeasure of container shipping alliance. The calculation results show that (1) Small and medium enterprises should consider that the costs reduction offered by the scale economy for transferring origin-destination (O-D) flows among the reasonable set of hub ports. (2) Since direct routes between the origin-destination (O-D) ports are relatively fixed and can avoid excessive costs and time generated by the detour, small and medium enterprises should consider that cutting costs when entering the container shipping market. (3) Small and medium enterprises should focus on the customer demands from the container shipping market not covered by container shipping alliance, in order to design the hub-and-spoke container shipping network by reasonable hub port selection strategy.

参考文献

[1] Nasrin A, Reza Z F, Mark G. Network design approach for hub ports-shipping companies competition and cooperation[J]. Transportation Research Part A, 2013, 48(2): 1-18.

[2] 王成金. 世界航运企业重组及其对航运网络结构的影响——兼论对中国港口体系的影响[J]. 世界地理研究, 2008, 17(1): 94-104.

[3] Ducruet C, Notteboom T. The worldwide maritime network of container shipping: spatial structure and regional dynamics[J]. Global networks, 2012, 12(3): 395-423.

[4] Wang Chengjin, Wang Jiaoe. Spatial pattern of the global shipping network and its hub-and-spoke system[J]. Research in Transportation Economics, 2011, 32(1): 54-63.

[5] Meng Qiang, Wang Xinchang. Intermodal hub-and-spoke network design: Incorporating multiple stakeholders and multi-type containers[J]. Transportation Research Part B, 2011, 45(4): 724-742.

[6] 李阳. 轴-辐式网络理论及应用研究[D]. 上海: 复旦大学, 2006.

[7] 傅少川, 胡梦飞, 唐方成. 禁忌搜索算法在单分配多枢纽轴辐式物流网络中的应用[J]. 中国管理科学, 2012, 20(3): 145-151.

[8] Campbell J F. Hub location for time definite transportation[J]. Computers and Operations Research, 2009, 36(12): 3107-3116.

[9] Alumur S, Kara B Y. Network hub location problems: the state of the art[J]. European Journal of Operational Research, 2008, 190(1): 1-21.

[10] Campbell J F, O'Kelly M E. Twenty-five years of hub location research[J]. Transportation Science, 2012, 46(2): 153-169.

[11] Faharani R, Hetmakfar M, Boloori A,et al. Hub location problems: a review of models, classification, solution techniques, and applications[J]. Computers and Industrial Engineering, 2013, 64(4): 1096-1109.

[12] Gabriela M, Bernd W. Hub locator: An exact solution method for the multiple allocation hub location problem[J]. Computers and Operations Research, 2002, 29(6): 715-739.

[13] Economides N. The economics of networks[J]. International Journal of Industrial Organization, 1996, 1(14): 673-700.

[14] Marianov V, Serra D, ReVelle C. Location of hubs in a competitive environment[J]. European Journal of Operational Research 1999, 114(2): 363-371.

[15] Sasaki M, Suzuki A, Drezner Z. On the selection of hub airports for the airline hub-and-spoke system[J]. Computers and Operations Research, 1999, 26(14):1411-1422.

[16] Lüer-Villagra A, Marianov V. A competitive hub location and pricing problem[J]. European Journal of Operational Research, 2013, 231(3): 734-744.

[17] Eiselt H A, Marianov V. A conditional p-hub location problem with attraction functions[J]. Computers and Operations Research, 2009, 36(12): 3128-3135.

[18] Sasaki M, Campbell J F, Ernst A T,et al. Hub arc location with competition[R]. Working Paper, Technical Report of the Nanzan Academic Society Information Sciences and Engineering, 2009.

[19] Imai A, Shintani K, Papadimitriou S. Multi-port vs. hub-and-spoke port calls by containerships[J]. Transportation Research Part E, 2009, 45(5): 740-757.

[20] 计明军, 陈哲, 王清斌. 集装箱船舶支线运输航线优化算法[J]. 交通运输工程学报, 2011, 11(4): 68-75.

[21] Gelareh S, Nickel S, Pisinger D. Liner shipping hub network design in a competitive environment[J]. Transportation Research Part E: Logistics and Transportation Review, 2010, 46(6): 991-1004.

[22] Bektas T, Chouman M, Crainic T G. Lagrangean-based decomposition algorithms for multicommodity network design problems with penalized constraints[J]. Networks, 2010, 55(3): 171-180.

[23] 倪玲霖, 史峰. 多分配快递轴辐网络的枢纽选址与分配优化方法[J]. 系统工程理论与实践, 2012, 32(2): 441-448.

[24] 陆婧, 杨忠振, 刘瑞菊. 考虑发车间隔与乘客人数关系的机场长途巴士时刻表优化设计[J]. 系统工程理论与实践, 2013, 33(8): 2097-2104.

[25] 邓亚娟, 陈小鸿, 杨超. 需求不确定的枢纽辐射式航线网络设计[J]. 交通运输工程学报, 2009, 9(6): 68-74.
文章导航

/