主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

基于TrTS取样的股票收益率RV测度的改进

展开
  • 1. 中国人民大学信息学院, 北京 100872;
    2. 上海交通大学安泰经济与管理学院, 上海 200030
赵军力(1990-),男(汉族),山东人,中国人民大学信息学院,研究生,研究方向:金融资产收益率波动性研究.

收稿日期: 2013-04-22

  修回日期: 2014-07-21

  网络出版日期: 2015-07-22

基金资助

中国人民大学科学研究基金项目(10XNI029); 北京市自然科学基金资助项目(4132067);国家自然科学基金资助项目(71271211)

An Improvement on the Estimate of Realized Variance of Stock Yield Based on Transaction Time Sampling

Expand
  • 1. Renmin University of China, School of Information, Beijing 100872, China;
    2. Shanghai Jiao Tong University, Antai College of Economics and Management, Shanghai 200030, China

Received date: 2013-04-22

  Revised date: 2014-07-21

  Online published: 2015-07-22

摘要

由于噪声的存在使得高频数据的分析过程存在着诸多困难,本文探讨了高频数据情况下的金融资产收益率已实现波动率的估计问题。在离散化的跳跃模型基础上,通过混合泊松分布而非传统的连续扩散模型来描述价格过程,并进一步提出了不同于以往文献研究的噪声假设,即在独立同分布的噪声假设基础上放松约束条件,保持噪声的独立性,但是允许噪声强度随时间变化,以此改善了传统的固定时间间隔取样模式。为了进一步改善估计效果,我们结合了TrTS(Transaction Time Sampling)以及一阶偏误修正的RV(realized variance)估计方式RVAC(1) (first-order AutoCorrelation to RV)。对来自两个交易所不同板块股票的价格数据进行的实证研究结果表明,本文的估计方式虽然对于个别股票价格数据会产生与实际背离潜在真实价格参数,但整体上对于已实现波动率的估计效果是比较稳健的。

本文引用格式

赵军力, 梁循 . 基于TrTS取样的股票收益率RV测度的改进[J]. 中国管理科学, 2015 , 23(7) : 26 -34 . DOI: 10.16381/j.cnki.issn1003-207x.2015.07.004

Abstract

The analysis of high-frequency data is diffucult, because of the white noise. In this paper, the estimate of RV on financial assets is studied, especially when high frequency asset prices are available. The analysis is based on a pure jump process for prices. The compound Poisson process (CPP) is introduced to describe the dynamics of price.Additionally, a new assumption is made on noise that generalizes the traditional i.i.d.one, which allows the variance of noise varying across the day. With the CPP model, the path of noise is separated from the observed price and then the noise path is used to improve the traditional sampling scheme. For further improvement, our new sampling scheme is combined with the transaction time sampling scheme and the first-order correction RV. Experiments on the stock price data from both stock exchanges in China demonstrate that although our estimator may produce an outlier occasionally, it can pass the robustness tests in general.

参考文献

[1] Oomen R C A. Properties of bias corrected realized variance under alternative sampling schemes[J]. Journal of Financial Econometrics, 2005, 3(4):555-557.

[2] Barndorff-Nielsen O E, Hansen P R, Lunde A, et al. Designing realized kernels to measure the ex post variation of equityprices in the presence of noise[J].Econometrica, 2008, 76(6): 1481-1536

[3] Bandi F M,Russell J R. Microstructure noise, realized volatility, and optimal sampling[J]. Review of Economic Studies, 2008, 75(2):339-369.

[4] Oomen R C A. Properties of realized variance under alternative sampling schemes[J].Journal of Business & Economic Statistics, 2006, 24(2):219-237.

[5] Oomen R. Properties of realized variance for a pure jump process: Calendar time sampling versus business time sampling[R]. Working Paper,Financial Econometrics Research Centre,2004.

[6] Hansen P R, Lunde A. Realized variance and market microstructure noise[J]. Journal of Business & Economic Statistics, 2006, 24(2):127-161.

[7] Hansen P R, Lunde A. Realized variance and I.I.D. market microstructure noise[J]. Journal of Business & Economics Statistics,2004, 24(2):208-218.

[8] Hansen P R, Lunde A. An unbiased measure of realized variance[R]. Working Paper, University of A arhus 2004.

[9] Bandi F M, Russell J R. Separating microstructure noise from volatility[J]. Journal of Financial Economics, 2005, 79(3):655-692.

[10] Griffin J E, Oomen R C A. Sampling returns for realized variance calculations: Tick time or transaction time[J]. Econometric Reviews, 2008, 27(1): 230-253.

[11] McAleer M,Medeiros M C. Realized volatility: A review[J]. Econometric Reviews, 2008, 27(1): 10-45.

[12] Gatheral J, Oomen R C A. Zero-intelligence realized variance estimation[J]. Finance Stoch, 2010, 14(2): 249-283.

[13] 沈根祥. 股票收益随机波动模型研究[J].中国管理科学, 2003, 11(2): 17-20.

[14] 张世英, 樊智. 协调理论与波动模型——金融时间序列分析及应用[M].清华大学出版社, 2004.

[15] 王春峰, 蒋祥林, 吴晓霖. 随机波动模型的比较分析[J].系统工程学报, 2005, 20(2):216-219.

[16] 王天一, 黄卓. 基于高频数据的波动率建模及应用研究评述[J]. 经济学动态, 2012, (3): 141-146.
文章导航

/