根据区间灰数空间映射思想,引入白化权函数来表征区间灰数的分布信息。定义灰形和灰心分别来描述白化权函数与区间灰数围成的封闭几何图形及其几何重心;定义灰圆和灰径分别来表示以灰心为圆心且与灰形具有相同面积的标准圆及其半径。在此基础上,以灰心序列的横、纵坐标序列为对象,以灰径的离差为权重,依照邓氏关联度原理构造了一个基于白化权函数的区间灰数关联度模型。并针对一种最为典型的白化权函数,具体导出了区间灰数关联度的计算公式。最后,通过一个供应商选择的实例验证了模型的科学性和可行性。基于白化权函数的区间灰数关联度在资源勘探、机器故障诊断、产品品质评价及供应商选择等方面有着广泛的应用前景。
Based on space mapping of interval grey number, whitenization weight function was used to describe the distribution of interval grey number. Grey figure and grey centre were defined to describe the shape of the whitenization weight function and its gravity centre respectively; Grey circle and grey radius were defined to describe the circle which has the same area as the grey figure and its radius respectively. Based on Deng's incidence degree, a new idea for the incidence degree analysis of interval grey number is proposed in this paper by measuring the difference of two grey figure sequences. With the horizontal and vertical ordinate sequence of grey centre and the difference of the grey radius, a new incidence degree model of interval grey number with whitenization weight function was established. Focus on one kind of widely used whitenization weight function, the specific formula of the incidence degree was derived. At the end of the paper, a numerical example of supplier selection proves that the new method is cogent and effective. Incidence degree model of interval grey number based on whitenization weight function could be widely used in the areas such as the resources exploration, the machinery fault diagnostic, the product quality evaluation and Supplier selection.
[1] 邓聚龙. 灰理论基础[M]. 武汉: 华中科技大学出版社, 2002.
[2] 刘思峰, 党耀国, 方志耕. 灰色系统理论及其应用[M]. 4版 北京: 科学出版社, 2008.
[3] Tsai C H, Chang C L, Chen L. Applying grey relational analysis to the vendor evaluation model[J].International Journal of The Computer, 2003, 11(3): 45-53.
[4] 尹富.基于灰色关联分析的航空装备技术保障能力评价模型[J].数学的实践与认识,2013,43(8):104-109.
[5] 陈洪涛,周德群,韩 谊.基于灰色关联理论的中外石油期货价格时差[J].系统工程理论与实践,2013,28(3):166-170.
[6] 徐兰,李晓萍,戴云徽.基于灰色关联分析的企业员工满意度评价[J].中国管理科学,2008,16(S1):68-70.
[7] 陈伟, Smieliauskas W, 刘思峰. 联网审计绩效评价影响因素的灰色关联分析[J].计算机应用研究,2012,29(2):435-437.
[8] 王清印. 灰色B型关联分析[J]. 华中理工大学学报, 1989, 17(6): 77-82.
[9] 王清印, 赵秀恒. C 型关联分析[J]. 华中理工大学学报, 1999, 27(3): 75-77.
[10] 梅振国.灰色绝对关联度及其计算方法[J]. 系统工程, 1992,10(5):43-44.
[11] Zeng Bo, Liu Sifeng. A new improved model of the degree of grey slope incidences based on t he changer ate of slope [C]. Proceedinos of IEEE International Conference on Grey Systems and Intelligent Services, Nanjing,China,November 10-12,2009.
[12] 孙玉刚, 党耀国. 灰色T 型关联度的改进[J]. 系统工程理论与实践, 2008,28(4): 135-139.
[13] 施红星,刘思峰,方志耕,等.灰色振幅关联度模型 [J]. 系统工程理论与实践, 2010,30(10):1828-1833.
[14] 施红星,刘思峰,方志耕,等.灰色周期关联度模型[J]. 中国管理科学, 2008,16(3):131-136.
[15] 杜宏云,施红星,刘思峰,等.基于斜率判断的灰色周期关联度研究 [J]. 中国管理科学, 2010,18(1):128-132.
[16] 王正新,党耀国,沈春光.三维灰色关联模型及其应用[J]. 统计与决策, 2011,(15):174-176.
[17] 刘勇,刘思峰, Forrest J.一种新的灰色绝对关联度模型及其应用[J].中国管理科学,2012,20(5):173-177.
[18] 王义闹.灰数序列关联分析[J]. 华中科技大学学报(自然科学版), 2005,33(5):7-9.
[19] 曾波,刘思峰,孟伟,等.基于空间映射的区间灰数关联度模型 [J]. 系统工程, 2010,28(8):122-126.
[20] Wu Sheng, Zhang Zhiyong. A new incidence degree model of interval grey number based on space mapping [C]. Proceedings of IEEE International Conference on Industrial Engineering and Engineering Management, Changchun,China,September 3-5,2011.
[21] 刘卫锋,杜迎雪.基于心态指标的区间灰数关联度模型[J]. 西华大学学报, 2012,31(3):57-60.
[22] 杨保华,方志耕,周 伟,等. 基于信息还原算子的多指标区间灰数关联决策模型[J].控制与决策, 2012,27(2):182-186.
[23] 曾波,刘思峰,崔杰.白化权函数已知的区间灰数预测模型[J]. 控制与决策, 2010,25(12):1815-1820.
[24] 左加.任意多边形匀面重心的计算方法[J]. 数学通报, 2002,(10):41-42.
[25] 王军武, 呙淑.文基于灰色关联度的建筑供应商选择方法研究[J]. 武汉理工大学学报, 2007,29(3):153-156.
[26] Tam M C Y, Tummala V M. An application of the AHP in vendor selection of a telecommunications system [J]. Omega,2001,29(2):171-1821.
[27] 周文坤,蒋文春. 基于改进TOPSIS法的供应商选择方法 [J]. 运筹与管理,2005,14(6):39-44.
[28] Timmerman E. An approach to vendor performance evaluation [J]. Engineering Management Review, 1987.15(3): 14-20.
[29] Saaty T L, Tran L T. On the invalidity of fuzzifying numerical judgments in the Analytic Hierarchy Process [J].Mathematical and Computer Modelling,2007,46(7-8):962-975.
[30] Gaballa A A. Minimum cost allocation of vendors [J]. Operational Research Quarterly,1974,25 (3):389-3981.
[31] Weber C A,Current J. A multiobjective approach to vendor selection [J]. European Journal of Operational Research,1993,68(2):173-1841.
[32] 刘思峰,谢乃明, Jeffery P.基于相似性和接近性视角的新型灰色关联分析模型[J]. 系统工程理论与实践, 2010,30(5):881-887.