主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2025, Vol. 33 ›› Issue (3): 196-208.doi: 10.16381/j.cnki.issn1003-207x.2022.0575cstr: 32146.14/j.cnki.issn1003-207x.2022.0575

• • 上一篇    下一篇

突发传染病环境下生鲜配送的选址-路径问题

张杰1,2, 李妍峰1,2()   

  1. 1.西南交通大学经济管理学院,四川 成都 610031
    2.服务科学与创新四川省重点实验室,四川 成都 610031
  • 收稿日期:2022-03-23 修回日期:2022-07-20 出版日期:2025-03-25 发布日期:2025-04-07
  • 通讯作者: 李妍峰 E-mail:yanwaa@126.com
  • 基金资助:
    国家自然科学基金项目(72471199);四川省哲学社会科学基金项目一般项目(SCJJ23ND191);中央高校基本业务费(理工类)基础研究培育项目(XJ2023000301)

Location-routing Problem of Fresh Product Distribution in Epidemic Environment

Jie Zhang1,2, Yanfeng Li1,2()   

  1. 1.School of Economics and Management,Southwest Jiaotong University,Chengdu 610031,China
    2.Service Science and Innovation Key Laboratory of Sichuan Province,Chengdu 610031,China
  • Received:2022-03-23 Revised:2022-07-20 Online:2025-03-25 Published:2025-04-07
  • Contact: Yanfeng Li E-mail:yanwaa@126.com

摘要:

为有效解决突发传染病背景下生鲜商品的“无接触”配送问题,在综合考虑传染病影响、商品易腐性、温控特性、站点选址和车辆-无人机协同配送路径规划的情况下,提出了基于传染病背景下生鲜配送的选址-路径问优化问题。首先,构建由车辆-无人机配送的运输成本、配送站点运营固定成本、冷藏车辆温控成本组成的总成本最小以及配送过程中生鲜商品价值损失最小的双目标优化模型。然后,根据问题特征提出一种两阶段混合启发式算法进行求解。改进的K-means三维聚类算法执行聚类方案内和不同聚类方案间的迭代优化,解决了配送站点选址问题;ENSGA-II混合算法通过扫描算子生成初始解、基于NSGA-II主循环框架嵌入灵活的存储结构和相应的禁忌搜索准则,求解了车辆-无人机路径规划问题。最后,基于算例分析和灵敏度分析探讨了生鲜配送选址-路径优化方案,生鲜商品配送的温控设置和无人机载重量选择。并通过与ε约束法、MOPSO算法和NSGA-II算法的比较分析,进一步验证了模型和两阶段混合启发式算法的有效性和可行性。

关键词: 生鲜商品, 温度控制, 两阶段混合启发式算法, 配送站点选址, 车辆-无人机路径

Abstract:

In order to effectively solve the “contactless” distribution problem of fresh product under the background of sudden infectious diseases, taking into account the impact of the infectious diseases, commodity perishability, temperature control characteristic, site location and coordinated delivery routing planning of vehicle-drone, the location-routing problem of fresh product distribution based on infectious disease background is proposed. A bi-objective optimization model is constructed to minimize the total cost of logistics operation and the value loss of fresh product. Then, an efficient two-phase hybrid heuristic algorithm based on the improved K-means clustering and the extended Non-dominated Sorting Genetic Algorithm-II (ENSGA-II) is devised according to the problem characteristics. The improved K-means three-dimensional clustering algorithm solves the location problem of the distribution site by performing iterative optimization within the clustering scheme and among different clustering schemes; The ENSGA-II hybrid algorithm generates the initial solution through the scanning operator, controls the search for the Pareto optimal frontier based on the NSGA-II main loop framework, and embeds flexible storage structure and corresponding tabu search criteria to solve the problem of vehicle-drone routing problem. Finally, based on the case analysis, the location strategy of distribution site and the coordinated delivery route of vehicle-drone are obtained. According to the sensitivity analysis, the optimal temperature control setting and drone load capacity selection for fresh product distribution are obtained. And through a comparative analysis with ε-constraint method, MOPSO algorithm and NSGA-II algorithm, the validity and feasibility of the bi-objective optimization model and the two-stage hybrid heuristic algorithm are verified. The research results show that an optimal vehicle-drone distribution plan can effectively reduce the objective values and realize the “contactless” delivery for ensuring the safety of vehicles and personnel in non-epidemic areas. A new theoretical basis and method reference is provided for the decision-making for the location-routing problem of fresh product distribution.

Key words: fresh products, temperature control, two-stage hybrid heuristic algorithm, location of distribution site, vehicle-drone routing

中图分类号: