主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2025, Vol. 33 ›› Issue (2): 28-37.doi: 10.16381/j.cnki.issn1003-207x.2024.1777cstr: 32146.14.j.cnki.issn1003-207x.2024.1777

• • 上一篇    下一篇

基于极小极大算法的信用评级模型

陆阳1,2, 石宝峰1,2()   

  1. 1.西北农林科技大学经济管理学院,陕西 杨凌 712100
    2.西北农林科技大学信用大数据应用研究中心,陕西 杨凌 712100
  • 收稿日期:2024-09-30 修回日期:2024-10-24 出版日期:2025-02-25 发布日期:2025-03-06
  • 通讯作者: 石宝峰 E-mail:shibaofeng@nwsuaf.edu.cn
  • 基金资助:
    国家社会科学基金重大项目(23&ZD175);国家自然科学基金面上项目(72173096)

Min-max Algorithm for Matching Credit Ratings with Loss Given Default

Yang Lu1,2, Baofeng Shi1,2()   

  1. 1.College of Economics and Management,Northwest A&F University,Yangling 712100,China
    2.Research Center on Credit and Big Data Analytics,Northwest A&F University,Yangling 712100,China
  • Received:2024-09-30 Revised:2024-10-24 Online:2025-02-25 Published:2025-03-06
  • Contact: Baofeng Shi E-mail:shibaofeng@nwsuaf.edu.cn

摘要:

信用评级旨在区分不同风险水平的贷款人,为银行信贷投资提供依据。目前,一些高信用等级的企业频频出现违约,表明信用等级和信用风险之间存在不匹配现象。为缓解这种不匹配,现有研究多以穷举所有等级方式划分客户信用等级,其计算复杂度过高,划分结果具有一定随机性。本文使用违约损失率来表征信用风险,并引入三个准则进行信用等级划分,这些准则旨在要求贷款客户的信用等级应与其违约损失率相匹配;进而,从理论上提出一种极小极大信用等级划分算法解决信用等级错配问题。本文首先讨论了该算法解的存在性并证明了解的唯一性,其次证明了所提算法的计算复杂度为O(n2),最后严格证明了该算法可以使信用等级与信用风险严格匹配。利用2017笔中小企业和2044笔农户真实信贷数据,实证结果表明:本文提出的极小极大信用等级划分算法可以将信用等级与违约风险严格匹配,并降低高信用等级的违约损失。该算法可为研究人员和金融机构在信用风险评估方面提供新的思路和参考。

关键词: 信用评级, 信用等级划分, 违约损失率, 极小极大算法

Abstract:

Credit rating aims to distinguish lenders with different risk levels and provide a basis for bank loans. Nowadays, credit ratings are prone to problems such as ratings overrated and lacking differences. The fact that some high-credit-level enterprises default indicates a mismatch between credit ratings and credit risk. To solve this mismatch, loss given default (LGD) is used to measure credit risk and establish three criteria: 1.The credit ratings should match their average loss given default. 2. Minimize the loss given default for high-credit-level ratings. 3. Without increasing the loss given default, the ratings should contain as many loan customers as possible. Next, it is demonstrated that credit scores are closely related to credit ratings. Therefore, the research hypothesis is that the credit score used in credit rating is positively correlated to the borrower’s credit level. With the constraints of these three criteria, a novel min-max algorithm is developed to solve the mismatch problem. The uniqueness of the solution of the proposed algorithm is further proved. The computational complexity of the min-max algorithm as On2)is then derived. By mathematics induction, it is proved that criterion 2 and criterion 3 imply criterion 1, so this algorithm can theoretically make credit ratings consistent with credit risk. To test the proposed algorithm, it is compared with the other two credit rating methods using 2,017 small and medium enterprises (SMEs) loans and 2,044 farmer loans. The results indicate the proposed algorithm can match the credit ratings with loss given defaultwelland lower high credit levels’ loss given default. The proposed min-max algorithm may bring new ideas and perspectives for researchers and financial institutions on credit risk evaluation.

Key words: credit rating, credit risk, loss given default, min-max algorithm

中图分类号: