主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2025, Vol. 33 ›› Issue (1): 311-322.doi: 10.16381/j.cnki.issn1003-207x.2024.1099cstr: 32146.14.j.cnki.issn1003-207x.2024.1099

• • 上一篇    下一篇

基于机器学习的资产收益率预测研究综述

李星毅1, 李仲飞2(), 李其谦2, 刘昱君3, 唐文金2   

  1. 1.深圳大学经济学院,广东 深圳 518060
    2.南方科技大学商学院,广东 深圳 518055
    3.中山大学管理学院,广东 广州 510275
  • 收稿日期:2024-06-30 修回日期:2024-11-14 出版日期:2025-01-25 发布日期:2025-02-14
  • 通讯作者: 李仲飞 E-mail:lizf6@sustech.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(72432005);国家自然科学基金重大项目(71991474);国家自然科学基金面上项目(72371079);深圳大学2035卓越研究计划(哲学社科)重大攻关项目(ZYZD2302);深圳大学青年教师科研启动项目(RC20240283)

A Review of Research on Asset Return Prediction Based on Machine Learning

Xingyi Li1, Zhongfei Li2(), Qiqian Li2, Yujun Liu3, Wenjin Tang2   

  1. 1.College of Economics,Shenzhen University,Shenzhen 518060,China
    2.College of Business,Southern University of Science and Technology,Shenzhen 518055,China
    3.School of Business,Sun Yat-sen University,Guangzhou 510275,China
  • Received:2024-06-30 Revised:2024-11-14 Online:2025-01-25 Published:2025-02-14
  • Contact: Zhongfei Li E-mail:lizf6@sustech.edu.cn

摘要:

本文综述基于机器学习的资产收益率预测研究,涵盖股票、基金、加密货币及债券等资产。随着大数据与人工智能的发展,机器学习以其处理高维数据和非线性关系的能力,在资产收益率预测中展现出显著优势。本文系统梳理各类机器学习方法在资产收益率预测中的应用,包括算法选择、模型构建及性能评估。研究发现,机器学习方法在提高预测精度和模型泛化能力方面成效显著,尤其擅长处理非结构化数据。平衡预测能力与模型可解释性仍是未来研究的重点。拓展资产类别与市场覆盖,深化大语言模型的应用,将进一步提升机器学习在金融预测中的有效性和适用性。

关键词: 机器学习, 收益率预测, 资产定价, 研究综述

Abstract:

Accurately predicting asset returns is essential for informed investment decision-making and maintaining financial market stability. With the rapid advancements in artificial intelligence and computing technologies, machine learning (ML) has demonstrated notable advantages in handling high-dimensional data and modeling complex, nonlinear relationships. A comprehensive review of ML applications in asset return prediction, encompassing stocks, funds, cryptocurrencies, and bonds is presented. The existing research on algorithm selection, model construction, and performance evaluation is systematically sumarized. This review begins by examining the origins and significance of asset return prediction, challenging the efficient market hypothesis and contributing to behavioral finance by analyzing irrational investor behaviors and sentiments. A spectrum of ML methods is then explored, ranging from traditional linear approaches to advanced deep learning and large language models (LLMs), highlighting their ability to address the complexities of financial markets. Techniques such as LASSO and Ridge regularization effectively manage high-dimensional datasets, while neural networks and recurrent neural networks (RNNs) capture long-term dependencies in time series data. Moreover, LLMs like BERT and GPT have shown promise in sentiment analysis and processing textual data, further improving predictive accuracy. The findings reveal that ML methods, particularly ensemble learning and deep learning models, consistently outperform conventional statistical models. For instance, Random Forests and Gradient Boosting Machines achieve superior out-of-sample accuracy, and integrating LLMs with financial text data opens new avenues for sentiment-based return prediction. The data sources employed, including historical prices, macroeconomic indicators, financial news, and social media sentiment, enable comprehensive model evaluations under diverse market conditions. By identifying current research gaps and future directions, this review underscores the importance of balancing predictive accuracy with model interpretability, as well as expanding the scope of asset classes examined. In summary, the analysis provides a holistic perspective on ML applications in asset return prediction, emphasizing their potential and challenges. This work informs investors, policymakers, and researchers, facilitating more effective strategies and decisions in the ever-evolving financial landscape.

Key words: machine learning, return prediction, asset pricing, research review

中图分类号: