中国管理科学 ›› 2023, Vol. 31 ›› Issue (8): 214-225.doi: 10.16381/j.cnki.issn1003-207x.2020.1893
收稿日期:
2020-10-08
修回日期:
2021-02-01
出版日期:
2023-08-15
发布日期:
2023-08-24
通讯作者:
吴鑫育
E-mail:xywu.aufe@gmail.com
基金资助:
Xin-yu WU1(),Hai-bin XIE2,Chao-qun MA3
Received:
2020-10-08
Revised:
2021-02-01
Online:
2023-08-15
Published:
2023-08-24
Contact:
Xin-yu WU
E-mail:xywu.aufe@gmail.com
摘要:
本文对条件自回归极差(CARR)模型进行扩展,引入基于高频数据的已实现测度,设定条件极差具有乘性成分结构:将条件极差乘性分解为长期(趋势)成分和短期(暂时)成分,并采用得分驱动方法设定这两个成分的动态性,构建了得分驱动乘性成分已实现CARR(SD-MCRCARR)模型。基于上证综合指数和深证成分指数高频数据的实证研究表明,SD-MCRCARR模型相比其他基准模型(包括SD-CARR模型、SD-RCARR模型和SD-MCCARR模型)具有更好的数据拟合效果。利用稳健的损失函数及模型置信集(MCS)检验作为判断准则,实证比较了SD-MCRCARR模型与其他基准模型对波动率的预测能力。实证结果表明:SD-MCRCARR模型相比其他基准模型具有更好的波动率预测能力,而且SD-MCRCARR模型优越的波动率预测能力具有关于不同预测窗口和预测期的稳健性。
中图分类号:
吴鑫育,谢海滨,马超群. 得分驱动乘性成分已实现CARR模型及其实证研究[J]. 中国管理科学, 2023, 31(8): 214-225.
Xin-yu WU,Hai-bin XIE,Chao-qun MA. Score-driven Multiplicative Component Tealized CARR Model and its Empirical Study[J]. Chinese Journal of Management Science, 2023, 31(8): 214-225.
表1
指数价格极差(Rt)与已实现波动率(RVt)的描述性统计量"
样本数目 | 均值 | 最小值 | 最大值 | 标准差 | 偏度 | 峰度 | Q(10) | Q(15) | |
---|---|---|---|---|---|---|---|---|---|
SSEC | |||||||||
3401 | 0.0114 | 0.0015 | 0.0639 | 0.0078 | 2.1229 | 9.4029 | 7887.5302 | 10743.4499 | |
3401 | 0.0115 | 0.0024 | 0.0625 | 0.0071 | 2.1327 | 9.9966 | 14308.6719 | 19565.2563 | |
SZSEC | |||||||||
3401 | 0.0133 | 0.0017 | 0.0757 | 0.0085 | 2.0441 | 9.2682 | 6598.3935 | 8878.6354 | |
3401 | 0.0133 | 0.0027 | 0.0728 | 0.0075 | 2.0290 | 9.7303 | 12412.7868 | 16782.5801 |
表2
参数估计结果"
参数 | SSEC | SZSEC | ||||||
---|---|---|---|---|---|---|---|---|
SD-CARR | SD- RCARR | SD- MCCARR | SD-MCRCARR | SD- CARR | SD- RCARR | SD- MCCARR | SD- MCRCARR | |
0.0001 (0.0000) | 0.0003 (0.0000) | 0.0000 (0.0000) | 0.0001 (0.0000) | 0.0002 (0.0000) | 0.0004 (0.0000) | 0.0001 (0.0000) | 0.0001 (0.0000) | |
0.1496 (0.0078) | 0.3349 (0.0074) | 0.0713 (0.0089) | 0.1203 (0.0076) | 0.1564 (0.0081) | 0.3501 (0.0076) | 0.0738 (0.0088) | 0.1103 (0.0073) | |
0.9888 (0.0029) | 0.9768 (0.0027) | 0.9964 (0.0016) | 0.9951 (0.0011) | 0.9846 (0.0031) | 0.9715 (0.0028) | 0.9953 (0.0017) | 0.9953 (0.0010) | |
— | — | 0.1095 (0.0140) | 0.2390 (0.0113) | — | — | 0.1218 (0.0144) | 0.2588 (0.0111) | |
— | — | 0.8446 (0.0347) | 0.7466 (0.0190) | — | — | 0.7818 (0.0453) | 0.7368 (0.0186) | |
— | 0.9890 (0.0167) | — | 0.9896 (0.0164) | — | 0.9888 (0.0156) | — | 0.9892 (0.0153) | |
5.6111 (0.1347) | 5.6237 (0.1636) | 5.6619 (0.1391) | 5.7138 (0.1656) | 5.6537 (0.1358) | 5.6854 (0.1622) | 5.7194 (0.1403) | 5.7869 (0.1640) | |
— | 13.1677 (0.2997) | — | 13.4563 (0.3009) | — | 13.2601 (0.2979) | — | 13.5986 (0.3043) | |
— | 29048.3847 | — | 29114.7915 | — | 27928.5108 | — | 28004.2767 | |
13840.0104 | 13873.3012 | 13856.2359 | 13902.8523 | 13276.9619 | 13327.4475 | 13297.7632 | 13349.7248 |
表3
波动率预测评价结果"
SD- CARR | SD- RCARR | SD- MCCARR | SD-MCRCARR | SD- CARR | SD- RCARR | SD- MCCARR | SD- MCRCARR | |
---|---|---|---|---|---|---|---|---|
SSEC | ||||||||
MSE | 1.0082e-05 | 9.4680e-06 | 9.8320e-06 | 9.3636e-06 | 6.1129e-06 | 5.2614e-06 | 5.8152e-06 | 5.0814e-06 |
QLIKE | 8.5367e-02 | 8.1198e-02 | 8.3608e-02 | 7.8957e-02 | 4.7234e-02 | 3.9839e-02 | 4.5878e-02 | 3.8787e-02 |
SZSEC | ||||||||
MSE | 1.6931e-05 | 1.5557e-05 | 1.6434e-05 | 1.5380e-05 | 9.2557e-06 | 8.1328e-06 | 8.5740e-06 | 7.6698e-06 |
QLIKE | 9.6594e-02 | 8.7423e-02 | 9.3713e-02 | 8.5675e-02 | 5.4347e-02 | 4.5692e-02 | 5.0739e-02 | 4.3204e-02 |
表4
MCS检验结果"
SD- CARR | SD- RCARR | SD- MCCARR | SD- MCRCARR | SD- CARR | SD- RCARR | SD- MCCARR | SD- MCRCARR | |
---|---|---|---|---|---|---|---|---|
SSEC | ||||||||
MSE | 0.0335 | 0.5882 | 0.0918 | 1.0000 | 0.0000 | 0.2775 | 0.0002 | 1.0000 |
QLIKE | 0.0003 | 0.0275 | 0.0047 | 1.0000 | 0.0000 | 0.2226 | 0.0000 | 1.0000 |
SZSEC | ||||||||
MSE | 0.0001 | 0.4540 | 0.0001 | 1.0000 | 0.0000 | 0.0169 | 0.0002 | 1.0000 |
QLIKE | 0.0000 | 0.1152 | 0.0000 | 1.0000 | 0.0000 | 0.0129 | 0.0000 | 1.0000 |
表5
MCS检验结果(预测窗口:1000)"
SD- CARR | SD- RCARR | SD- MCCARR | SD- MCRCARR | SD- CARR | SD- RCARR | SD- MCCARR | SD- MCRCARR | |
---|---|---|---|---|---|---|---|---|
SSEC | ||||||||
MSE | 0.0072 | 0.3300 | 0.0123 | 1.0000 | 0.0002 | 0.5523 | 0.0005 | 1.0000 |
QLIKE | 0.0003 | 0.0166 | 0.0008 | 1.0000 | 0.0000 | 0.1665 | 0.0000 | 1.0000 |
SZSEC | ||||||||
MSE | 0.0020 | 0.2253 | 0.0069 | 1.0000 | 0.0001 | 0.1570 | 0.0008 | 1.0000 |
QLIKE | 0.0000 | 0.0339 | 0.0000 | 1.0000 | 0.0000 | 0.0041 | 0.0000 | 1.0000 |
表6
MCS检验结果(预测窗口:1500)"
SD- CARR | SD- RCARR | SD- MCCARR | SD- MCRCARR | SD- CARR | SD- RCARR | SD- MCCARR | SD- MCRCARR | |
---|---|---|---|---|---|---|---|---|
SSEC | ||||||||
MSE | 0.0163 | 0.3343 | 0.0297 | 1.0000 | 0.0004 | 0.6224 | 0.0011 | 1.0000 |
QLIKE | 0.0004 | 0.0043 | 0.0043 | 1.0000 | 0.0000 | 0.0319 | 0.0000 | 1.0000 |
SZSEC | ||||||||
MSE | 0.0063 | 0.1716 | 0.0325 | 1.0000 | 0.0003 | 0.1438 | 0.0033 | 1.0000 |
QLIKE | 0.0001 | 0.0060 | 0.0001 | 1.0000 | 0.0000 | 0.0004 | 0.0000 | 1.0000 |
表7
MCS检验结果(预测期:5天)"
SD- CARR | SD- RCARR | SD- MCCARR | SD- MCRCARR | SD- CARR | SD- RCARR | SD- MCCARR | SD- MCRCARR | |
---|---|---|---|---|---|---|---|---|
SSEC | ||||||||
MSE | 0.1400 | 0.1400 | 0.2650 | 1.0000 | 0.0001 | 0.0049 | 0.0049 | 1.0000 |
QLIKE | 0.1527 | 0.0052 | 0.5718 | 1.0000 | 0.0002 | 0.0076 | 0.0159 | 1.0000 |
SZSEC | ||||||||
MSE | 0.0125 | 0.0125 | 0.1126 | 1.0000 | 0.0000 | 0.0003 | 0.0004 | 1.0000 |
QLIKE | 0.0040 | 0.0040 | 0.0763 | 1.0000 | 0.0000 | 0.0003 | 0.0012 | 1.0000 |
表8
MCS检验结果(预测期:10天)"
SD- CARR | SD- RCARR | SD- MCCARR | SD- MCRCARR | SD- CARR | SD- RCARR | SD- MCCARR | SD- MCRCARR | |
---|---|---|---|---|---|---|---|---|
SSEC | ||||||||
MSE | 0.0003 | 0.0000 | 0.0201 | 1.0000 | 0.0000 | 0.0000 | 0.0004 | 1.0000 |
QLIKE | 0.0000 | 0.0000 | 0.1263 | 1.0000 | 0.0000 | 0.0000 | 0.0155 | 1.0000 |
SZSEC | ||||||||
MSE | 0.0000 | 0.0000 | 0.0033 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
QLIKE | 0.0000 | 0.0000 | 0.0014 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
1 | Bollerslev T. Genearlized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31(3): 307-327. |
2 | Taylor S J. Modelling financial time series[M]. Chichester: John Wiley and Sons, 1986. |
3 | Parkinson M. The extreme value method for estimating the variance of the rate of return[J]. Journal of Business, 1980, 53(1): 61-65. |
4 | Alizadeh S, Brandt M W, Diebold F X. Range-based estimation of stochastic volatility models[J]. Journal of Finance, 2002, 57(3): 1047-1091. |
5 | Brandt M, Jones C. Volatility forecasting with range-based EGARCH models[J]. Journal of Business & Economic Statistics, 2006, 24(4): 470-486. |
6 | Degiannakis S, Livada A. Realized volatility or price range: evidence from a discrete simulation of the continous time diffusion process[J]. Economic Modelling, 2013, 30: 212-216. |
7 | 李红权, 汪寿阳. 基于价格极差的金融波动率建模: 理论与实证分析[J]. 中国管理科学, 2009, 17(6): 1-8. |
Li Hongquan, Wang Shouyang. Modeling financial volatilities based on price range: theoretical research and empirical study[J]. Chinese Journal of Management Science, 2009, 17(6): 1-8. | |
8 | 孙便霞, 王明进. 基于价格极差的GARCH模型[J]. 数理统计与管理, 2013, 32(2): 259-267. |
Sun Bianxia, Wang Mingjin. A new class GARCH model based on price range[J]. Journal of Applied Statistics and Management, 2013, 32(2): 259-267. | |
9 | 郑挺国, 左浩苗. 基于极差的区制转移随机波动率模型及其应用[J]. 管理科学学报, 2013, 16(9): 82-94. |
Zheng Tingguo, Zuo Haomiao. Range based regime switching stochastic volatility models with applications[J]. Journal of Management Sciences in China, 2013, 16(9): 82-94. | |
10 | 刘威仪, 孙便霞, 王明进. 基于日度低频价格的波动率预测[J]. 管理科学学报, 2016, 19(1): 60-71. |
Liu Weiyi, Sun Bianxia, Wang Mingjin. Volatility forecasting based on daily frequency prices[J]. Journal of Management Sciences in China, 2016, 19(1): 60-71. | |
11 | 刘威仪. 基于半极差模型的高低价预测[J]. 数理统计与管理, 2019, 38(2): 314-325. |
Liu Weiyi. Forecasting high and low prices based on semi-range models[J]. Journal of Applied Statistics and Management, 2019, 38(2): 314-325. | |
12 | Chou R. Forecasting financial volatilities with extreme values: the conditional autoregressive range (CARR) model[J]. Journal of Money, Credit and Banking, 2005, 37(3): 561-582. |
13 | Engle R. New frontiers for ARCH models[J]. Journal of Applied Econometrics, 2002, 17(5): 425-446. |
14 | Engle R F, Gallo J P. A multiple indicator model for volatility using intra daily data[J]. Journal of Econometrics, 2006, 131(1-2): 3-27. |
15 | Chen C W S, Gerlach R, Lin E M H. Volatility forecast using threshold heteroskedastic models of the intra-day range[J]. Computational Statistics & Data Analysis, 2008, 52(6): 2990-3010. |
16 | Chou R, Liu N. The economic value of volatility timing using a range-based volatility model[J]. Journal of Economic Dynamics and Control, 2010, 34(11): 2288-2301. |
17 | Chiang M H, Wang Limin. Volatility contagion: a range-based volatility approach[J]. Journal of Econometrics, 2011, 165(2): 175-189. |
18 | Anderson R I, Chen, Yichi, Wang Limin. A range-based volatility approach to measuring volatility contagion in securitized real estate markets[J]. Economic Modelling, 2015, 45: 223-235. |
19 | Lin E M H, Chen C W S, Gerlach R. Forecasting volatility with asymmetric smooth transition dynamic range models[J]. International Journal of Forecasting, 2012, 28(2): 384-399. |
20 | Sin C Y. Using CARRX models to study factors affecting the volatilities of Asian equity markets[J]. North American Journal of Economics and Finance, 2013, 26: 552-564. |
21 | Auer B R. How does Germany's green energy policy affect electricity market volatility? An application of conditional autoregressive range models[J]. Energy Policy, 2016, 98: 621-628. |
22 | Chan J, Ng K, Nitithumbundit T, et al. Efficient estimation of financial risk by regressing the quantiles of parametric distributions: an application to CARR models[J]. Studies in Nonlinear Dynamics & Econometrics, 2019, 23(2): 1-22. |
23 | Chou R, Chou H, Liu N. Range volatility: a review of models and empirical studies[M]. Handbook of Financial Econometrics and Statistics, Social Science Electronic Publishing, 2015, 2029-2050. |
24 | 赵树然, 任培民, 赵昕. 基于CARR-EVT整体方法的动态日VaR和CVaR模型研究[J]. 数量经济技术经济研究, 2012, 29(11): 130-148. |
Zhao Shuran, Ren Peimin, Zhao Xin. Modeling daily VaR and CVaR and EVT models[J]. Journal of Quantitative & Technological Economics, 2012, 29(11): 130-148. | |
25 | 王沁. 基于杠杆效应CARR模型的波动率预测[J]. 数理统计与管理, 2017, 36(1): 51-58. |
Wang Qin. The volatility forecast based on the leverage effect CARR model[J]. Journal of Applied Statistics and Management, 2017, 36(1): 51-58. | |
26 | 鲁万波, 于翠婷, 王敏. 基于非参数条件自回归极差模型的中国股市波动性预测[J]. 数理统计与管理, 2018, 37(3): 544-553. |
Lu Wanbo, Yu Cuiting, Wang Min. Forecasting volatility of Chinese stock market with nonparameteric conditional autoregressive range model[J]. Journal of Applied Statistics and Management, 2018,37(3): 544-553. | |
27 | 王沁. 金融市场间波动溢出效应研究——基于Gumber的二维CARR模型和生存Copula-CARR模型[J]. 数理统计与管理, 2019, 38(3): 535-548. |
Wang Qin. Research on the volatility spillover between financial markets: based on the Gumber’s two-dimensional CARR model and the Survival Copula-CARR model[J]. Journal of Applied Statistics and Management, 2019, 38(3): 535-458. | |
28 | Xie Haibin, Wu Xinyu. Range-based volatility forecasting: an extended conditional autoregressive range model[J]. Journal of Risk, 2019, 21(3), 55-80. |
29 | Xie Haibin. Financial volatility modeling: the feedback asymmetric conditional autoregressive range model[J]. Journal of Forecasting, 2019, 38(1): 11-28. |
30 | Andersen T G, Bollerslev T, Diebold F X, et al. Modeling and forecasting realized volatility[J]. Econometrica, 2003, 71(2): 579-625. |
31 | Takahashi M, Omori Y, Watanabe T. Estimating stochastic volatility models using daily returns and realized volatility simultaneously[J]. Computational Statistics & Data Analysis, 2009, 53(6): 2404-2426. |
32 | Takahashi M, Watanabe T, Omori Y. Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution[J]. International Journal of Forecasting, 2016, 32(2): 437-457. |
33 | Koopman S J, Scharth M. The analysis of stochastic volatility in the presence of daily realized measures[J]. Journal of Financial Econometrics, 2013, 11(1): 76-115. |
34 | Shephard N, Sheppard K. Realising the future: forecasting with high-frequency-based volatility (HEAVY) models[J]. Journal of Applied Econometrics, 2010, 25(2): 197-231. |
35 | Noureldin D, Shephard N, Sheppard K. Multivariate high-frequency-based volatility (HEAVY) models[J]. Journal of Applied Econometrics, 2012, 27(6): 907-933. |
36 | Hansen P R, Huang Zhuo, Shek H H. Realized GARCH: a joint model for returns and realized measures of volatility[J]. Journal of Applied Econometrics, 2012, 27(6): 877-906. |
37 | Hansen P R, Huang Zhuo. Exponential GARCH modeling with realized measures of volatility[J]. Journal of Business & Economic Statistics, 2016, 34(2): 269-287. |
38 | Harris R D F, Stoja E, Yilmaz F. A cyclical model of exchange rate volatility[J]. Journal of Banking & Finance, 2011, 35(11): 3055-3064. |
39 | Harris R D F, Mazibas M. A component Markov regime-switching autoregressive conditional range model[J]. Bulletin of Economic Research, 2022, 74(2): 650-683. |
40 | 姚远, 刘振清, 翟佳, 等. 人民币汇率的双成分混合波动率模型[J]. 管理科学学报, 2019, 22(11): 91-105. |
Yao Yuan, Liu Zhenqing, Zhai Jia, et al. Two-component hybrid volatility models on CNY exchange rates[J]. Journal of Management Sciences in China, 2019, 22(11): 91-105. | |
41 | Engle R F, Lee G G L. A long-run and short-run component model of stock return volatility[C]// In Cointegration, Causality, and Forecasting, Oxford University Press, 1999. |
42 | Ding Zhuanxin. Volatility modeling using GARCH: theory and practice[R]. Working Paper, 2016. |
43 | Engle R F, Rangel J. The spline-GARCH model for low-frequency volatility and its global macroeconomic causes[J]. Review of Financial Studies, 2008, 21(3): 1187-1222. |
44 | Engle R F, Ghysels E, Sohn B. Stock market volatility and macroeconomic fundamentals[J]. Review of Economics and Statistics, 2013, 95(3): 776-797. |
45 | Amado C, Teräsvirta T. Modelling volatility by variance decomposition[J]. Journal of Econometrics, 2013, 175(2): 142-153. |
46 | Amado C, Teräsvirta T. Specification and testing of multiplicative time-varying GARCH models with applications[J]. Econometric Reviews, 2017, 36(4): 421-446. |
47 | Amado C, Silvennoinen A, Teräsvirta T. Models with multiplicative decomposition of conditional variances and correlations[C]. In J. Chevallier, S. Goutte, D. Guerreiro, S. Saglio, & B. Sanhaji (Eds.), Financial Mathematics, Volatility and Covariance Modelling, 2019, 2: 217-260. |
48 | Wang Fangfang, Ghysels E. Econometric analysis of volatility component models[J]. Econometric Theory, 2015, 31(2): 362-393. |
49 | Conrad C, Kleen O. Two are better than one: volatility forecasting using multiplicative component GARCH-MIDAS models[J]. Journal of Applied Econometrics, 2020, 35(1): 19-45. |
50 | Wu Xiuyu, Hou Xinmeng. Forecasting volatility with component conditional autoregressive range model[J]. North American Journal of Economics and Finance, 2020, 51, Article 101078. |
51 | 吴鑫育, 谢海滨, 李心丹. 基于非对称双成份CARR模型的波动率预测[J]. 数理统计与管理, 2021, 40(1): 36-50. |
Wu Xinyu, Xie Haibin, Liu Xindan. Volatility forecasting based on asymmetric two-component CARR model[J]. Journal of Applied Statistics and Management, 2021, 40(1): 36-50. | |
52 | Xie Haibin. Range-based volatility forecasting: a multiplicative component conditional autoregressive range model[J]. Journal of Risk, 2020, 22(5): 1-23. |
53 | Creal D, Koopman S J, Lucas A. Generalized autoregressive score models with applications[J]. Journal of Applied Econometrics, 2013, 28(5): 777-795. |
54 | Harvey A. Dynamic models for volatility and heavy tails: with applications to financial and economic time series[M]. New York: Cambridge University Press, 2013. |
55 | Blasques F, Koopman S J, Lucas A. Information-theoretic optimality of observation-driven time series models for continuous responses[J]. Biometrika, 2015, 102(2): 325-343. |
56 | Harvey A, Sucarrat G. EGARCH models with fat tails, skewness and leverage[J]. Computational Statistics & Data Analysis, 2014, 76: 320-338. |
57 | Eckernkemper T. Modeling systemic risk: time-varying tail dependence when forecasting marginal expected shortfall[J]. Journal of Financial Econometrics, 2017, 16(1): 63-117. |
58 | Oh D H, Patton A J. Time-varying systemic risk: evidence from a dynamic copula model of CDS spreads[J]. Journal of Business & Economic Statistics, 2018, 36(2): 181-195. |
59 | Bernardi M, Catania L. Switching generalized autoregressive score copula models with application to systemic risk[J]. Journal of Applied Econometrics, 2019, 34(1): 43-65. |
60 | Patton A J, Ziegel J F, Chen Rui. Dynamic semiparametric models for expected shortfall (and value-at-risk)[J]. Journal of Econometrics,2019,211(2): 388-413. |
61 | Lazar E, Xue Xiaohan. Forecasting risk measures using intraday data in a generalized autoregressive score framework[J]. International Journal of Forecasting, 2020, 36(3): 1057-1072. |
62 | 王天一, 黄卓. Realized GAS-GARCH及其在VaR预测中的应用[J]. 管理科学学报, 2015, 18(5): 79-86. |
Wang Tianyi, Huang Zhuo. Realized GAS-GARCH model and its application in Value-at-Risk forecast[J]. Journal of Management Sciences in China, 2015, 18(5): 79-86. | |
63 | 邹玉梅, 范敬雅. 基于广义自回归得分模型的时变D-vine的应用[J]. 数理统计与管理, 2018, 37(1): 74-82. |
Zhou Yumei, Fan Jingya. Time-varying D-vine based on GAS model and application[J]. Journal of Applied Statistics and Management, 2018, 37(1): 74-82. | |
64 | 沈根祥, 邹欣悦. 已实现波动GAS-HEAVY模型及其实证研究[J]. 中国管理科学, 2019, 27(1): 1-10. |
Shen Genxiang, Zou Xinyue. GAS-HEAVY model for realized measures of volatility and returns[J]. Chinese Journal of Management Science, 2019, 27(1): 1-10. | |
65 | 姚萍,王杰,杨爱军,等. 基于SGT分布族的GAS波动模型及其在VaR预测中的应用[J]. 数理统计与管理, 2020, 39(5): 884-892. |
Yao Ping, Wang Jie, Yang Aijun, et al. GAS volatility model based on SGT distribution and its application in risk forecasting[J]. Journal of Applied Statistics and Management, 2020, 39(5): 884-892. | |
66 | Diebold F X. Modelling the persistence of conditional variance: a comment[J]. Econometric Reviews, 1986, 5(1): 51-56. |
67 | Lamoureux C G, Lastrapes W D. Persistence in variance, structural change and the GARCH model[J]. Journal of Business & Economic Statistics, 1990, 8(2): 225-234. |
68 | Diebold F X, Inoue A. Long memory and regime switching[J]. Journal of Econometrics, 2001, 105(1): 131-159. |
69 | Granger C W J, Hyung N. Occasional structural breaks and long memory with an application to the S&P500 absolute stock returns[J]. Journal of Empirical Finance, 2004, 11(3): 399-421. |
70 | Hillebrand E. Neglecting parameter changes in GARCH models[J]. Journal of Econometrics, 2005, 129(1-2): 121-138. |
71 | Andersen T G, Bollerslev T, Diebold F X, et al. The distribution of exchange rate volatility[J]. Journal of the American Statistical Association, 2001, 96(453): 42-55. |
72 | Liu L Y, Patton A, Sheppard K. Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes[J]. Journal of Econometrics, 2015, 187(1): 293-311. |
73 | Patton A. Volatility forecast comparison using imperfect volatility proxies[J]. Journal of Econometrics, 2011, 160(1): 246-256. |
74 | Hansen P R, Lunde A, Nason J M. The model confidence set[J]. Econometrica, 2011, 79(2): 453-497. |
[1] | 吴鑫育,姜晓晴,李心丹,马超群. 基于已实现EGARCH-FHS模型的上证50ETF期权定价研究[J]. 中国管理科学, 2024, 32(3): 105-115. |
[2] | 蔡光辉, 项琳. 中国铜期货市场波动率估计与风险度量——基于广义已实现测度的Realized HAR GARCH模型[J]. 中国管理科学, 2021, 29(11): 1-12. |
[3] | 吴鑫育, 李心丹, 马超群. 双因子非对称已实现SV模型及其实证研究[J]. 中国管理科学, 2018, 26(2): 1-13. |
[4] | 刘维奇, 邢红卫, 张信东. 投资偏好与“特质波动率之谜”——以中国股票市场A股为研究对象[J]. 中国管理科学, 2014, 22(8): 10-20. |
[5] | 李红权, 汪寿阳. 基于价格极差的金融波动率建模: 理论与实证分析[J]. 中国管理科学, 2009, 17(6): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|