中国管理科学 ›› 2021, Vol. 29 ›› Issue (12): 191-202.doi: 10.16381/j.cnki.issn1003-207x.2019.1451
王安宁1,2, 张强1,2, 彭张林1,2, 杨善林1,2
收稿日期:
2019-09-23
修回日期:
2020-04-03
出版日期:
2021-12-20
发布日期:
2021-12-28
通讯作者:
张强(1984-),男(汉族),四川人,合肥工业大学管理学院,教授,研究方向:产品设计创新、数据分析与信息管理,Email:qiang_zhang@hfut.edu.cn.
E-mail:qiang_zhang@hfut.edu.cn
基金资助:
WANG An-ning1,2, ZHANG Qiang1,2, PENG Zhang-lin1,2, YANG Shan-lin1,2
Received:
2019-09-23
Revised:
2020-04-03
Online:
2021-12-20
Published:
2021-12-28
Contact:
张强
E-mail:qiang_zhang@hfut.edu.cn
摘要: 随着社交网络的发展,大量用户生成的在线评论影响着消费者的行为,同时被应用于企业的经营管理活动,引起市场营销、信息系统、产品开发等领域学者们的广泛关注,取得很大的研究进展。但是在线评论的研究范围广泛,目前并没有系统性的概念框架,缺乏对在线评论的全局认识。因此,本文尝试从行为影响和价值应用两个层面对在线评论研究文献进行全面总结,并结合当前的技术发展和市场环境,探讨在线评论研究的未来趋势。
中图分类号:
王安宁, 张强, 彭张林, 杨善林. 在线评论的行为影响与价值应用研究综述[J]. 中国管理科学, 2021, 29(12): 191-202.
WANG An-ning, ZHANG Qiang, PENG Zhang-lin, YANG Shan-lin. A Review of Behavioral Influence and Value Application for Online Reviews[J]. Chinese Journal of Management Science, 2021, 29(12): 191-202.
[1] Mudambi S M, Schuff D. What makes a helpful online review? A study of customer reviews on Amazon.Com[J]. MIS Quarterly, 2010, 34(1): 185-200. [2] Chevalier J A, Mayzlin D. The effect of word of mouth on sales: Online book reviews[J]. Journal of Marketing Research, 2006, 43(3): 345-354. [3] 冯娇, 姚忠. 基于社会学习理论的在线评论信息对购买决策的影响研究[J]. 中国管理科学, 2016, 24(9): 106-114.Feng Jiao, Yao Zhong. Research on the influence of online review information on purchasing decision based on social learning theory[J]. Chinese Journal of Management Science, 2016, 24(9): 106-114. [4] Godes D, Mayzlin D. Using online conversations to study word-of-mouth communication[J]. Marketing Science, 2004, 23(4): 545-560. [5] Kwark Y, Chen J, Raghunathan S. User-generated content and competing firms’ product design[J]. Management Science, 2017, 64(10): 4608-4628. [6] Zhou F, Jiao R J, Linsey J S. Latent customer needs elicitation by use case analogical reasoning from sentiment analysis of online product reviews[J]. Journal of Mechanical Design, 2015, 137(7): 071401. [7] 毕建武, 刘洋, 樊治平. 依据在线评论的商品排序方法[J]. 系统工程学报, 2018, 33(3): 422-432.Bi Jianwu, Liu Yang, Fan Zhiping. Product ranking method based on online comments[J]. Journal of Systems Engineering, 2018, 33(3): 422-432. [8] Netzer O, Feldman R, Goldenberg J, et al. Mine your own business: Market-structure surveillance through text mining[J]. Marketing Science, 2012, 31(3): 521-543. [9] Bi Jianwu, Liu Yang, Fan Zhiping, et al. Modelling customer satisfaction from online reviews using ensemble neural network and effect-based Kano model[J]. International Journal of Production Research, 2019, 57(22): 7068-7088. [10] Webster J, Watson R. Analyzing the past to prepare for the future: Writing a literature review, MIS Quarterly, 2002, 26(2). [11] Fink L, Rosenfeld L, Ravid G. Longer online reviews are not necessarily better[J]. International Journal of Information Management, 2018, 39: 30-37. [12] Ghose A, Ipeirotis P G. Estimating the helpfulness and economic impact of product reviews: Mining text and reviewer characteristics[J]. IEEE Transactions on Knowledge and Data Engineering, 2011 23(10): 1498-1512. [13] 苗蕊, 徐健. 评分不一致性对在线评论有用性的影响——归因理论的视角[J]. 中国管理科学, 2018, 26(5): 178-186.Miao Rui, Xu Jian. The effect of rating inconsistency on the usefulness of online reviews: An attributional theory perspective[J]. Chinese Journal of Management Science, 2018, 26(5): 178-186. [14] Singh J P, Irani S, Rana N P, et al. Predicting the “helpfulness” of online consumer reviews[J]. Journal of Business Research, 2017, 70: 346-355. [15] Ren G, Hong T. Examining the relationship between specific negative emotions and the perceived helpfulness of online reviews[J]. Information Processing & Management, 2018, 56(4): 1425-1438. [16] Yin D, Bond S D, Zhang H. Anxious or angry? Effects of discrete emotions on the perceived helpfulness of online reviews[J]. MIS Quarterly, 2014, 38(2): 539-560. [17] Bickart B, Schindler R M. Internet forums as influential sources of consumer information[J]. Journal of Interactive Marketing. 2001, 15(3): 31-40. [18] 殷国鹏. 消费者认为怎样的在线评论更有用?——社会性因素的影响效应[J]. 管理世界, 2012, 12: 115-124.Yin Guopeng. What kind of online reviews do consumers find more useful? The effect of social factors[J]. Management World, 2012, 12: 115-124. [19] Hernández-Ortega B. Don’t believe strangers: Online consumer reviews and the role of social psychological distance[J]. Information & Management, 2018, 55(1): 31-50. [20] Qazi A, Shah K B, Raj R G, et al. A concept-level approach to the analysis of online review helpfulness[J]. Computers in Human Behavior, 2016, 58: 75-81. [21] Ford G T, Smith D B, Swasy J L. Consumer skepticism of advertising claims: Testing hypotheses from economics of information[J]. Journal of Consumer Research, 1990, 16 (4): 433-441. [22] 游浚, 张晓瑜, 杨丰瑞. 在线评论有用性的影响因素研究——基于商品类型的调节效应[J]. 软科学, 2019, 5: 140-144.You Jun, Zhang Xiaoyu, Yang Fengrui. Factors influencing the usefulness of online reviews: A moderating effect based on product type[J]. Soft Science, 2019, 5: 140-144. [23] Park D H, Kim S. The effects of consumer knowledge on message processing of electronic word-of-mouth via online consumer reviews[J]. Electronic Commerce Research and Applications, 2008, 7(4): 399-410. [24] Zhu Feng, Zhang Xiaoquan. Impact of online consumer reviews on sales: the moderating role of product and consumer characteristics[J]. Journal of Marketing, 2010, 74(2) 133-148. [25] Zhang K Z K, Zhao S J, Cheung C M K, et.al. Examining the influence of online reviews on consumers’ decision-making: A heuristic-systematic model[J]. Decision Support Systems, 2014, 67(C): 78-89. [26] Park D H, Lee J, Han I. The effect of online consumer reviews on consumer purchasing intention: the moderating role of involvement[J]. International Journal of Electronic Commerce, 2007, 11(4): 125-148. [27] Archak N, Ghose A, Ipeirotis P G. Deriving the Pricing Power of Product Features by Mining Consumer Reviews[J]. Management Science, 2011, 57(8): 1485-1509. [28] Anderson E T, Simester D I. Reviews without a purchase: Low ratings, loyal customers, and deception[J]. Journal of Marketing Research, 2014, 51(3): 249-269. [29] Sun M. How does the variance of product ratings matter?[J]. Management Science, 2012, 58(4): 696-707. [30] 朱丽叶, 袁登华, 张静宜. 在线用户评论质量与评论者等级对消费者购买意愿的影响——产品卷入度的调节作用[J]. 管理评论, 2017, 29(2): 87-96.Zhu Liye, Yuan Denghua, Zhang Jing Yi. The effect of online user review quality and reviewer rating on consumers' purchase intention: The moderating effect of product involvement[J]. Business Review, 2017, 29(2): 87-96. [31] Cui Geng, Lui H K, Guo Xiaoning. The effect of online consumer reviews on new product sales[J]. International Journal of Electronic Commerce, 2012, 17(1): 39-58. [32] 石文华, 张绮, 蔡嘉龙. 在线评论矛盾性对消费者矛盾态度和购买意愿的影响研究[J]. 管理评论, 2018, 30(7): 77-88.Shi Wenhua, Zhang Qi, Cai Jialong. The influence of online review ambivalence on consumers' ambivalence and purchase intention[J]. Business Review, 2018, 30(7): 77-88. [33] 王伟, 王洪伟. 特征观点对购买意愿的影响:在线评论的情感分析方法[J]. 系统工程理论与实践, 2016 36(1): 63-76.Wang Wei, Wang Hongwei. The effect of trait viewpoint on purchase intention: An emotion analysis approach for online reviews[J]. System Engineering Theory and Practice, 2016 36(1): 63-76. [34] Huang Tingliang, Liang Chao, Wang Jingqi. The value of “Bespoke”: Demand learning, preference learning, and customer behavior[J]. Management Science, 2017, 64(7): 1-17. [35] Wathieu L, Bertini M. Price as a stimulus to think: The case for willful overpricing[J]. Marketing Science, 2007, 26(1): 118-129. [36] Kuksov D, Xie Y. Pricing, frills, and customer ratings[J]. Marketing Science, 2010, 29(5): 925-943. [37] Li X, Hitt L M. Price effects in online product reviews: An analytical model and empirical analysis[J]. MIS Quarterly, 2010, 34(4): 809-A5. [38] Jing Bing. Social learning and dynamic pricing of durable goods[J]. Marketing Science, 2011, 30(5): 851-865. [39] Chen Yubo, Xie Jinhong. Online consumer review: Word-of-Mouth as a new element of marketing communication mix[J]. Management Science, 2008, 54(3): 477-491. [40] Lee T Y, BradLow E T. Automated marketing research using online customer reviews[J]. Journal of Marketing Research, 2011, 48(5): 881-894. [41] Hu Minqing, Liu Bing. Mining and summarizing customer reviews[C] // Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, August 22-25, 2004. [42] 李实, 叶强, 李一军, 等. 中文网络客户评论的产品特征挖掘方法研究[J]. 管理科学学报, 2009, 12(2): 142-152.Li Shi, Ye Qiang, Li Yijun, et al. Research on product feature mining method of Chinese online customer reviews[J]. Journal of Management Sciences in China, 2009, 12(2): 142-152. [43] Lee A T, Yang Fuchen, Chen C H, et al. Mining perceptual maps from consumer reviews[J]. Decision Support Systems, 2016, 82: 12-25. [44] Tuarob S, Tucker C S. Quantifying product favorability and extracting notable product features using large scale social media data[J]. Journal of Computing Information Science in Engineering, 2015, 15(3): 031003. [45] Jin Jian, Ji Ping, Gu Rui. Identifying comparative customer requirements from product online reviews for competitor analysis[J]. Engineering Applications of Artificial Intelligence, 2016, 49: 61-73. [46] Tan Songbo, Zhang Jin. An empirical study of sentiment analysis for Chinese documents[J]. Expert Systems with Applications, 2008, 34(4): 2622-2629. [47] Abdi A, Shamsuddin S M, Hasan S, et al. Deep learning-based sentiment classification of evaluative text based on Multi-feature fusion[J]. Information Processing & Management, 2019, 56(4): 1245-1259. [48] 尤天慧, 张瑾, 樊治平. 基于在线评价信息和消费者期望的商品选择方法[J]. 中国管理科学, 2017, 25(11): 94-102.You Tianhui, Zhang Jin, Fan Zhiping. Product selection method based on online evaluation information and consumer expectations[J]. Chinese Journal of Management Science, 2017, 25(11): 94-102. [49] 郝玫, 马建峰. 在线评论中基于动态窗口提取特征观点对的产品推荐模型[J]. 系统工程理论与实践, 2018, 38(9): 2363-2375.Hao Mei, Ma Jianfeng. Product recommendation model based on dynamic window extraction of feature opinion pairs in online reviews[J]. System Engineering Theory and Practice, 2018, 38(9): 2363-2375. [50] Morente-Molinera J A, Kou G, Samuylov K, et al. Carrying out consensual Group Decision Making processes under social networks using sentiment analysis over comparative expressions[J]. Knowledge-Based Systems. 2019, 165: 335-345. [51] Chen Kun, Kou Gang, Shang J, et al. Visualizing market structure through online product reviews: Integrate topic modeling, TOPSIS, and multi-dimensional scaling approaches[J]. Electronic Commerce Research and Applications, 2015, 14(1): 58-74. [52] Liu Yang, Bi Jianwu, Fan Zhiping. A method for ranking products through online reviews based on sentiment classification and interval-valued intuitionistic fuzzy TOPSIS[J]. International Journal Information Technology & Decision Making, 2017, 16(6): 1497-1522. [53] Yang Xian, Yang Guangfei, Wu Jiangning. Integrating rich and heterogeneous information to design a ranking system for multiple products[J]. Decision Support Systems, 2016, 84: 117-133. [54] Liu Yang, Bi Jianwu, Fan Zhiping. Ranking products through online reviews: A method based on sentiment analysis technique and intuitionistic fuzzy set theory[J]. Information Fusion, 2017, 36: 149-161. [55] Zhang Zhu, Guo Chenhui, Goes P. Product comparison networks for competitive analysis of online Word-of-Mouth[J]. ACM Transactions on Management Information Systems, 2013, 3(4): 20:1-20:22. [56] Xu Kaiquan, Liao S, Li Jiexun, et al. Mining comparative opinions from customer reviews for Competitive Intelligence[J]. Decision Support Systems, 2011, 50(4): 743-754. [57] 王洪伟, 蒋文瑛, 高松, 等. 面向竞争力分析的中文在线评论的比较观点识别:以餐饮业为例[J]. 情报学报, 2015, 34(12): 1259-1269.Wang Hongwei, Jiang Wenying, Gao Song, et al. Comparative viewpoint identification of Chinese online reviews for competitiveness analysis: A case study of the restaurant industry[J]. Journal of The China Society for Scientific and Technical Information, 2015, 34(12): 1259-1269. [58] Zhang Kunpeng, Bhattacharyya S, Ram S. Large-scale network analysis for online social brand advertising[J]. MIS Quarterly, 2016, 40 (4): 849-868. [59] Ringel D M, Skiera B. Visualizing asymmetric competition among more than 1,000 products using big search data[J]. Marketing Science, 2016, 35(3): 511-534. [60] Culotta A, Cutler J. Mining brand perceptions from twitter social networks[J]. Marketing Science, 2016, 35(3): 343-362. [61] Gensler S, Vlckner F, Egger M, et al. Listen to your customers: Insights into brand image using online consumer-generated product reviews[J]. International Journal of Electronic Commerce, 2015, 20(1): 112-141. [62] John D R, Loken B, Kim K, et al. Brand concept maps: A methodology for identifying brand association networks[J]. Journal of Marketing Research, 2006, 43(4): 549-563. [63] Tirunillai S, Tellis G J. Mining marketing meaning from online chatter: Strategic brand analysis of big data using latent Dirichlet allocation[J]. Journal of Marketing Research, 2014, 51(4): 463-479. [64] Abrahams A S, Jiao Jian, Wang G A, et al. Vehicle defect discovery from social media[J]. Decision Support Systems, 2012, 54(1) 87-97. [65] Abrahams S, Fan Weiguo, Wang G A, et al. An integrated text analytic framework for product defect discovery[J]. Production Operations Management, 2015, 24(6): 975-990. [66] 蒋翠清, 王齐林, 刘士喜, 等. 中文社会媒体环境下半监督学习的汽车缺陷识别方法[J]. 中国管理科学, 2014, 22(S1): 677-685.Jiang Cuiqing, Wang Qilin, Liu Shixi, et al. An automobile defect recognition method based on sub-supervised learning in Chinese social media environment[J]. Chinese Journal of Management Science, 2014, 22(S1): 677-685. [67] 张嵩, 吴剑云, 樊卫国, 等. 基于社交媒体分析的手机缺陷识别[J]. 计算机集成制造系统, 2016, 22(9): 2264-2273.Zhang Song, Wu Jianyun, Fan Weiguo, et al. Mobile phone defect recognition based on social media analysis[J]. Computer Integrated Manufacturing Systems, 2016, 22(9): 2264-2273. [68] Feit E M, Beltramo M A, Feinberg F M. Reality check: combining choice experiments with market data to estimate the importance of product attributes[J]. Management Science, 2010, 56(5): 785-800. [69] Ma J, Kim H M. Continuous preference trend mining for optimal product design with multiple profit cycles[J]. Journal Mechanical Design, 2014, 136(6): 061002 [70] Green P E, Rao V R. Conjoint measurement for quantifying judgmental data[J]. Journal of Marketing Research, 1971, 8(3): 355-363. [71] Qi Jiayin, Zhang Zhenping, Jeon S, et al. Mining customer requirements from online reviews: A product improvement perspective[J]. Information & Management, 2016, 53(8): 951-963. [72] Halme M, Kallio M. Estimation methods for choice-based conjoint analysis of consumer preferences[J]. European Journal of Operational Research. 2011, 214 (1) 160-167. [73] Decker R, Trusov M. Estimating aggregate consumer preferences from online product reviews[J]. International Journal of Research in Marketing, 2010, 27 (4) 293-307. [74] Xiao Shengsheng, Wei C P, Dong Ming. Crowd intelligence: Analyzing online product reviews for preference measurement[J]. Information & Management, 2016, 53(2): 169-182. [75] Liu Ying, Jin Jian, Ji Ping, et al. Identifying helpful online reviews: A product designer’s perspective[J]. Computer-Aided Design. 2013, 45(2): 180-194. [76] Jiang Cuiqing, Liu Yao, Ding Yong, et al. Capturing helpful reviews from social media for product quality improvement: A multi-class classification approach[J]. International Journal of Production Research, 2017, 55(12): 3528-3541. [77] Tuarob S, Tucker C S. Automated discovery of lead users and latent product features by mining large scale social media networks[J]. Journal of Mechanical Design, 2015, 137(7): 071402. [78] Li Y M, Chen M, Liou J H, et.al. Creating social intelligence for product portfolio design[J]. Decision Support Systems, 2014, 66: 123-134. [79] Kiss C, Bichler M. Identification of influencers-Measuring influence in customer networks[J]. Decision Support Systems, 46(1): 233-253. [80] Liu Shixi, Jiang Cuiqing, Lin Zhangxi, et al. Identifying effective influencers based on trust for electronic word-of-mouth marketing: A domain-aware approach[J]. Information Sciences, 2015, 306: 34-52. |
[1] | 肖泉,万杉杉,张星,蔡淑琴. IT可供性视角下移动直播电商平台用户质量感知与满意度研究[J]. 中国管理科学, 2024, 32(10): 181-193. |
[2] | 孙凯, 左美云, 吴一兵. 功能性IT产品首次试用和重复试用对消费者态度的影响有什么不同?[J]. 中国管理科学, 2021, 29(6): 202-210. |
[3] | 沈超, 王安宁, 方钊, 张强. 基于在线评论数据的产品需求趋势挖掘[J]. 中国管理科学, 2021, 29(5): 211-220. |
[4] | 郭晓姝, 张焱, 徐健. 道歉承诺类管理反馈策略对顾客二次满意度的影响——基于顾客多样情绪调节效应[J]. 中国管理科学, 2021, 29(2): 217-227. |
[5] | 王安宁, 张强, 彭张林, 陆效农, 方钊. 融合特征情感和产品参数的客户感知偏好模型[J]. 中国管理科学, 2020, 28(9): 199-208. |
[6] | 晏梦灵, 张佳源. 医生的信息-情感交互模式对移动问诊服务满意度的影响——基于“激励-保健”理论的分析[J]. 中国管理科学, 2019, 27(9): 108-118. |
[7] | 蔡淑琴, 王旸, 王艺兴, 秦志勇, 窦聪颖. 在线负面口碑处理的专家识别方法研究[J]. 中国管理科学, 2019, 27(3): 189-197. |
[8] | 苗蕊, 徐健. 评分不一致性对在线评论有用性的影响——归因理论的视角[J]. 中国管理科学, 2018, 26(5): 178-186. |
[9] | 王萌, 郭迅华, 陈国青, 李志杰. 在线关系对中小网商绩效影响的实证分析[J]. 中国管理科学, 2016, 24(10): 156-163. |
[10] | 刘伟, 徐鹏涛. O2O电商平台在线点评有用性影响因素的识别研究——以餐饮行业O2O模式为例[J]. 中国管理科学, 2016, 24(5): 168-176. |
[11] | 郑大庆, 李俊超, 黄丽华. “3Q”大战背景下的软件持续使用研究:基于修订的“期望-确认”模型[J]. 中国管理科学, 2014, 22(9): 123-132. |
[12] | 田军, 李莉芳, 白剑, 冯耕中. 基于DSM的应急任务流程模块化设计研究[J]. 中国管理科学, 2014, 22(8): 100-107. |
[13] | 梁昌勇, 顾东晓, 程文娟, 杨昌辉, 顾佐佐. 含非连续性信息多属性案例中的决策知识发现方法[J]. 中国管理科学, 2014, 22(4): 83-91. |
[14] | 李欣苗, 李嘉, 谢航, 谢虹雨. 面向开放式团队知识创新的动态标签关联网研究[J]. 中国管理科学, 2013, 21(4): 137-143. |
[15] | 李德刚, 于德介, 刘坚, 舒浩华. 基于Agent的组织建模研究[J]. 中国管理科学, 2005, (6): 136-142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|