Chinese Journal of Management Science ›› 2024, Vol. 32 ›› Issue (1): 260-267.doi: 10.16381/j.cnki.issn1003-207x.2020.0816
Previous Articles Next Articles
Received:2020-05-08
Revised:2020-10-20
Online:2024-01-25
Published:2024-02-08
Contact:
Wenjie Bi
E-mail:beenjoy@126.com
CLC Number:
Yuting Yan,Wenjie Bi. A Data-driven Single-Period Newsvendor Problem Based on XGBoost Algorithm[J]. Chinese Journal of Management Science, 2024, 32(1): 260-267.
"
| 方法 | TSL=0.6 | TSL=0.7 | TSL=0.8 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| cost | ?cost(%) | SL | cost | ?cost(%) | SL | cost | ?cost(%) | SL | |
| XO-- | 0.59 | 47814.28 | 59.82 | 0.61 | 0.8 | ||||
| XO-- | 57486.67 | 58.59 | 0.49 | 0.6 | 43802.5 | 57.93 | 0.78 | ||
| XGBoost点预测 | 63106.33 | 54.54 | 0.51 | 51887.34 | 56.39 | 0.58 | 46942.5 | 54.91 | 0.62 |
| 线性回归点预测 | 77783.91 | 43.97 | 0.43 | 66671.92 | 43.97 | 0.49 | 58337.93 | 43.97 | 0.49 |
| Lasso点预测 | 76613.02 | 44.81 | 0.49 | 65668.30 | 44.81 | 0.52 | 57459.76 | 44.81 | 0.52 |
| 岭回归点预测 | 77722.42 | 44.01 | 0.52 | 66619.21 | 44.01 | 0.49 | 58291.81 | 44.01 | 0.49 |
| SAA | 138820.0 | — | 0.49 | 118988.57 | — | 0.43 | 104115.0 | — | 0.43 |
"
| 方法 | S= 0.2 | S= 0.4 | S= 0.6 | S= 0.8 | S= 1.0 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| cost | ?cost(%) | SL | cost | ?cost(%) | SL | cost | ?cost(%) | SL | cost | ?cost(%) | SL | cost | ?cost(%) | SL | |
| XO- | 56.13 | 0.65 | 60.23 | 0.62 | 50630.98 | 57.45 | 0.59 | 59.30 | 0.62 | 47814.28 | 59.82 | 0.61 | |||
| XO- | 54591.42 | 54.12 | 0.7 | 48054.28 | 59.61 | 0.71 | 58.41 | 0.59 | 49151.42 | 58.69 | 0.55 | 60.85 | 0.6 | ||
| XGBoost点预测 | 57887.34 | 51.35 | 0.56 | 54329.75 | 54.34 | 0.55 | 52265.71 | 56.08 | 0.56 | 52416.32 | 55.95 | 0.56 | 51887.34 | 56.39 | 0.58 |
| 线性回归点预测 | 72756.51 | 38.85 | 0.48 | 69844.55 | 41.30 | 0.47 | 66535.08 | 44.08 | 0.48 | 66538.08 | 44.08 | 0.48 | 66671.92 | 43.97 | 0.49 |
| Lasso点预测 | 71071.79 | 40.27 | 0.54 | 65607.61 | 44.86 | 0.5 | 63785.62 | 46.39 | 0.57 | 64751.26 | 45.58 | 0.5 | 65668.30 | 44.81 | 0.52 |
| 岭回归点预测 | 72252.52 | 39.28 | 0.48 | 68930.05 | 42.07 | 0.47 | 66381.74 | 44.21 | 0.49 | 66417.88 | 44.18 | 0.48 | 66619.21 | 44.01 | 0.49 |
| SAA | 118988.6 | — | 0.43 | 118989 | — | 0.43 | 118988.7 | — | 0.43 | 118988.57 | — | 0.43 | 118988.57 | — | 0.43 |
"
| 参数 | 含义 | 样本量 | ||||
|---|---|---|---|---|---|---|
| 0.2 | 0.4 | 0.6 | 0.8 | 1 | ||
| learning_rate | 每步迭代步长 | 0.01 | 0.01 | 0.13 | 0.11 | 0.1 |
| n_estimators | 控制弱学习器数目,即最大迭代次数 | 500 | 500 | 500 | 500 | 500 |
| max_depth | 树的最大深度,用来控制过拟合 | 7 | 9 | 7 | 6 | 9 |
| min_child_weight | 子集的所有观察值的最小权重和,控制过拟合 | 9 | 9 | 5 | 3 | 9 |
| subsample | 构建每棵树样本采样率,用于训练模型子样本占整个样本集合的比例 | 0.8 | 0.7 | 0.8 | 0.8 | 0.8 |
| colsample_bytree | 列采样率,即特征采样率 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
| gamma | 分裂节点时损失函数减小值只有大于gamma节点才分裂,值越大算法越不容易过拟合 | 0.3 | 0 | 0 | 0 | 0.3 |
| 权重 | 1 | 10 | 5 | 10 | 5 | |
| 权重 | 0 | 5 | 10 | 20 | 5 | |
| 1 | Silver E A, Pyke D F, Thomas D J. Inventory and production management in supply chains[M]. Florida: CRC Press, 2016. |
| 2 | Kleywegt A J, Shapiro A, Homem-de-Mello T. The sample average approximation method for stochastic discrete optimization[J]. SIAM Journal on Optimization, 2002, 12(2): 479-502. |
| 3 | Shapiro A. Monte Carlo sampling methods[J]. Handbooks in operations research and management science, 2003(10): 353-425. |
| 4 | Levi R, Roundy R O, Shmoys D B. Provably near-optimal sampling-based policies for stochastic inventory control models[J]. Mathematics of Operations Research, 2007, 32(4): 821-839. |
| 5 | Levi R, Perakis G, Uichanco J. The data-driven newsvendor problem: new bounds and insights[J]. Operations Research, 2015, 63(6): 1294-1306. |
| 6 | Liyanage L H, Shanthikumar J G. A practical inventory control policy using operational statistics[J]. Operations Research Letters, 2005, 33(4): 341-348. |
| 7 | See C T, Sim M. Robust approximation to multiperiod inventory management[J]. Operations research, 2010, 58(3): 583-594. |
| 8 | Bertsimas D, Kallus N. From predictive to prescriptive analytics[J]. Management Science, 2020, 66(3): 1025-1044. |
| 9 | Huber J, Müller S, Fleischmann M, et al. A data-driven newsvendor problem: from data to decision[J]. European Journal of Operational Research, 2019, 278(3): 904-915. |
| 10 | 文平, 庞庆华. 基于预期的报童问题研究[J]. 中国管理科学, 2018, 26(3): 109-116. |
| Wen P, Pang Q H. The research of newsvendor problem based on expectation[J]. Chinese Journal of Management Science, 2018, 26(3): 109-116. | |
| 11 | 文平. 损失厌恶的报童-预期理论下的报童问题新解[J]. 中国管理科学, 2005(6): 64-68. |
| Wen P. The loss averse newsboy-the solution of newsboy problem under prospect theory [J]. Chinese Journal of Management Science, 2005(6): 64-68. | |
| 12 | 曹兵兵, 樊治平, 尤天慧,等. 考虑损失规避的温度敏感型产品定价与订货联合决策[J]. 中国管理科学, 2017, 25(4): 60-69. |
| Cao B B, Fan Z P, You T H, et al. Joint pricing and ordering decisions for the temperature sensitive product considering the loss aversion[J]. Chinese Journal of Management Science, 2017, 25(4): 60-69. | |
| 13 | 刘咏梅, 彭民, 李立. 基于前景理论的订货问题[J]. 系统管理学报, 2010, 19(5): 481-490. |
| Liu Y M, Peng M, Li L. Ordering problems based on prospect theory[J]. Journal of Systems & Management, 2010, 19(5): 481-490. | |
| 14 | 周艳菊, 应仁仁, 陈晓红,等. 基于前景理论的两产品报童的订货模型[J].管理科学学报, 2013, 16(11): 17-29. |
| Zhou Y J, Ying R R, Chen X H, et al. Two-product newsboy problem based on prospect theory[J]. Journal of Management Sciences in China, 2013, 16(11): 17-29. | |
| 15 | Scarf H E, Arrow K J, Karlin S. A min-max solution of an inventory problem[M]. Santa Monica: Rand Corporation, 1957. |
| 16 | Beutel A L, Minner S. Safety stock planning under causal demand forecasting[J]. International Journal of Production Economics, 2012, 140(2): 637-645. |
| 17 | Ban G Y, Rudin C. The big data newsvendor: practical insights from machine learning[J].Operations Research, 2019, 67(1): 90-108. |
| 18 | Oroojlooyjadid A, Snyder L V, Takáč M. Applying deep learning to the newsvendor problem[J].IISE Transactions, 2020, 52(4): 444-463. |
| 19 | Chen T Q, Guestrin C. Xgboost: a scalable tree boosting system[C]//Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, San Francisco, USA, August 13-17, 2016: 785-794. |
| 20 | 周志华. 机器学习[M]. 北京:清华大学出版社, 2016. |
| Zhou Z H. Machine learning[M]. Beijing:Tsinghua Press, 2016. | |
| 21 | Ferreira K J, Lee B H A, Simchi-Levi D. Analytics for an online retailer: demand forecasting and price optimization[J]. Manufacturing & Service Operations Management, 2016, 18(1): 69-88. |
| 22 | Breiman L, Friedman J H, Olshen R A, et al. Classification and regression trees[M]. New York: Routledge, 2017. |
| 23 | Hearst M A, Dumais S T, Osuna E, et al. Support vector machines[J]. IEEE Intelligent Systems and their applications, 1998, 13(4): 18-28. |
| 24 | Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. |
| 25 | Zhang Y, Yang X Y. Online ordering policies for a two-product, multi-period stationary newsvendor problem[J]. Computers & Operations Research, 2016, 74: 143-151. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
||
