主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2026, Vol. 34 ›› Issue (2): 133-144.doi: 10.16381/j.cnki.issn1003-207x.2023.1435cstr: 32146.14.j.cnki.issn1003-207x.2023.1435

• • 上一篇    下一篇

考虑需求可拆分的雇佣和众包车辆协同运输路径规划模型

周煜丰, 吴志彬(), 向传凯, 徐玖平   

  1. 四川大学商学院,四川 成都 610065
  • 收稿日期:2023-08-29 修回日期:2023-12-21 出版日期:2026-02-25 发布日期:2026-02-04
  • 通讯作者: 吴志彬 E-mail:zhibinwu@scu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(72371175);国家自然科学基金面上项目(71971148);中央高校基本科研业务费专项资金项目(SXYPY202334)

A Collaborative Route Planning Model for Hiring and Crowdsourcing Vehicles with Split Delivery

Yufeng Zhou, Zhibin Wu(), Chuankai Xiang, Jiuping Xu   

  1. Business School,Sichuan University,Chengdu 610065,China
  • Received:2023-08-29 Revised:2023-12-21 Online:2026-02-25 Published:2026-02-04
  • Contact: Zhibin Wu E-mail:zhibinwu@scu.edu.cn

摘要:

众包是社会车辆接受偏离自己的路线向其他人递送物品并获得少量补偿的运输模式。当企业雇佣车辆和社会众包车辆共同参与物流配送时,如何协调这两者的运输路线是企业降低运输成本的关键。本文在这一背景下,考虑客户需求被任意拆分的情况,建立了需求可拆分的协同运输路径规划模型。然后,设计关系模型辅助评价的遗传算法求解模型,算法框架包括上下两层,上层采用0-1编码的遗传算法将客户分配给不同类型的车辆,下层针对上层的分配结果采用自然数编码的遗传算法,分别解决雇佣车辆和众包车辆的路径规划子问题。为了加快下层遗传算法的求解效率,利用支持向量机模型学习解对之间的优劣关系辅助下层遗传算法搜索。最后,基于标准算例库设计测试集并进行数值实验,结果表明,所提出的算法具有较好的性能。企业可以采用协同运输模式,同时,优先使用高容量的众包车辆以降低企业运营成本。

关键词: 车辆路径问题, 众包, 协同运输, 需求可拆分, 关系模型, 遗传算法

Abstract:

Crowdsourcing is a mode of transportation in which social vehicles accept to deviate from their own routes to deliver goods to others for a small amount of compensation. With the popularity of the sharing economy, it has become an important means to reduce logistics and transportation costs. However, there is a significant difference in the transport capacity of vehicles in the crowdsourcing model, and customer needs are split to meet when participating in logistics delivery. At the same time, when enterprises employ both their own vehicles and social crowdsourced vehicles for logistics delivery, the key to reducing transportation costs lies in coordinating the routes of these two types of vehicles. In this paper, considering that customer demand can be split, a collaborative transportation routing model with split demands is established. Then, a genetic algorithm for relational model-assisted evaluation is designed. The algorithm framework consists of two layers: the upper layer adopts the genetic algorithm of 0-1 coding to assign customers to different types of vehicles, and the lower layer adopts the genetic algorithm of real number coding for the distribution results of the upper layer to solve the subproblems of routing problems for hired vehicles and crowdsourcing vehicles respectively. In order to speed up the efficiency of the lower genetic algorithm, support vector machine model is used to learn the relationship between the good and bad of the solution pairs for assisting the search of the lower genetic algorithm. Finally, some test instances based on benchmark instances are designed, and numerical experiments are conducted. The results demonstrate that the proposed algorithm performs well. The management enlightenment obtained from the research is as follows: (1) Enterprises can adopt collaborative transportation mode to reduce transportation costs. (2) In the process of reducing enterprise operating costs, crowd-sourced vehicles with larger available capacity should be given priority.

Key words: vehicle routing problem, crowdsourcing, cooperative transportation, split delivery, relational model, genetic algorithm

中图分类号: