主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2025, Vol. 33 ›› Issue (12): 57-70.doi: 10.16381/j.cnki.issn1003-207x.2025.0004cstr: 32146.14.j.cnki.issn1003-207x.2025.0004

• • 上一篇    下一篇

人口老龄化与经济增长——基于GaR 模型的实证研究

赵林海(), 甘筱航   

  1. 华侨大学经济与金融学院,福建 泉州 362021
  • 收稿日期:2025-01-01 修回日期:2025-05-15 出版日期:2025-12-25 发布日期:2025-12-25
  • 通讯作者: 赵林海 E-mail:zhaolinhai@hqu.edu.cn
  • 基金资助:
    国家社会科学基金一般项目(20BJL015)

Population Aging and Economic Growth in China: An Empirical Study Based on GaR Model

Linhai Zhao(), Xiaohang Gan   

  1. College of Economics and Finance,Huaqiao University,Quanzhou 362021,China
  • Received:2025-01-01 Revised:2025-05-15 Online:2025-12-25 Published:2025-12-25
  • Contact: Linhai Zhao E-mail:zhaolinhai@hqu.edu.cn

摘要:

随着中国人口老龄化程度不断加深,如何应对老龄化对经济增长的冲击并发掘经济增长潜力是中国经济高质量发展面临的重要问题之一。本文首先借助MRW模型分析了经济增长的机理,然后基于GaR模型实证研究人口老龄化对经济增长的影响。研究结果表明,老龄化程度在较大范围分位数区域与经济增长显著负相关;物质资本投资、人力资本投资以及技术水平在较大分位数区域对人口老龄化负向抑制经济增长存在调节效应。在理论与实证分析的基础上,本文提出了应对中国人口老龄化加剧经济下行风险的政策建议。

关键词: GaR模型, 人口老龄化, 经济增长, 分位数回归, 经济增长风险

Abstract:

With the deepening of population aging in China, how to cope with the impact of aging on economic growth and tap the potential of economic growth has become one of the important issues for China’s high-quality economic development. The driving factors of economic growth are analyzed through the MRW model (the total output function is Y=KαHβ(AL)1-α-β, where Y is total output, K and H are physical capital and human capital respectively, L is labor force, A is technical level, and α and β are output elasticities). Then, using the GaR model combined with quantile regression, and based on China’s time-series data from 1990 to 2023, the impact of population aging on economic growth and the regulatory role of related variables is examined. The research results show that aging is significantly negatively correlated with economic growth in a large range of quantiles; physical capital investment, human capital investment, and technical level have regulatory effects on this negative inhibitory effect in a large range of quantiles. The deficiency of traditional mean regression is made up for in the research on tail risks of economic growth, a new perspective is provided for understanding the relationship between population aging and economic growth, and the conclusions and policy recommendations have certain reference value for related academic research and the formulation of economic policies to cope with aging.

Key words: growth-at-risk model, population aging, economic growth, quantile regression, risks of economic growth

中图分类号: