主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2025, Vol. 33 ›› Issue (5): 99-112.doi: 10.16381/j.cnki.issn1003-207x.2023.1896cstr: 32146.14/j.cnki.issn1003-207x.2023.1896

• • 上一篇    下一篇

人工智能驱动管理决策:应用、感知与偏见

谷炜1, 刘亚金1, Lu Feng Susan2, 闫相斌3()   

  1. 1.北京科技大学经济管理学院,北京 100083
    2.多伦多大学罗特曼管理学院,多伦多 M5S 2E8
    3.广东外语外贸大学商学院,广东 广州 510420
  • 收稿日期:2023-11-09 修回日期:2024-04-01 出版日期:2025-05-25 发布日期:2025-06-04
  • 通讯作者: 闫相斌 E-mail:xbyan@gdufs.edu.cn
  • 基金资助:
    国家自然科学基金项目(72072010);北京市自然科学基金项目(9232023)

AI-Driven Decision Sciences: Application, Perception and Bias

Wei Gu1, Yajin Liu1, Feng Susan Lu2, Xiangbin Yan3()   

  1. 1.School of Economics and Management,University of Science and Technology Beijing,Beijing 100083,China
    2.Rotman School of Management University of Toronto,Toronto M5S 2E8,Canada
    3.School of Business,Guangdong University of Foreign Studies,Guangzhou 510420,China
  • Received:2023-11-09 Revised:2024-04-01 Online:2025-05-25 Published:2025-06-04
  • Contact: Xiangbin Yan E-mail:xbyan@gdufs.edu.cn

摘要:

近年来,由人工智能引领的新一轮科技创新和产业变革,突破了传统管理决策系统受限于数据可获取性和模型可解性的局限性,使得自动化的数据分析和智能化的决策支持成为可能。同时,在数字经济浪潮的推动下,人工智能技术已广泛渗透到企业运营决策的各个环节,这为实现数字化管理创造了新的机遇,同时也给管理决策研究带来了新的挑战。本文从人工智能在不同商业环境的应用、人们对人工智能的感知和人工智能算法的偏见这三个方面对人工智能驱动的管理决策进行梳理、归纳和展望,并提出了未来研究的趋势和方向,为开展更深层次的研究提供了思路,为企业管理者和政策制定者进行科学决策提供参考,推动人工智能驱动管理决策的理论研究与商业实践。

关键词: 人工智能, 管理与决策, 机器学习, 人机交互

Abstract:

Recent advancements in artificial intelligence (AI) have significantly transformed traditional management decision-making systems, enabling automated data analysis and enhanced decision support. The widespread integration of AI across various enterprise operations, propelled by the digital economy, presents new opportunities for digital management while posing challenges for decision science research. A comprehensive literature review is conducted to explore AI applications across diverse business domains, focusing on perceptions of AI, and examining the critical issue of AI bias. The role of AI is investigated in operations management, marketing, accounting, finance, and healthcare specifically. Moreover, human perceptions of AI technologies and algorithms are analyzed, addressing concerns related to AI discrimination and suggesting potential solutions. While AI has demonstrated substantial value across multiple management contexts and has significantly improved management effectiveness through enhanced human-computer interaction, it also introduces increased heterogeneity in public perception of AI, which may yield unforeseen negative consequences. The issue of AI bias further complicates its widespread application. It provides valuable insights for enterprise leaders and policymakers aiming to make informed decisions and contributes to advancing the theoretical foundations and practical implications of AI-driven decision sciences in this research.

Key words: artificial intelligence, management and decision-making, machine learning, human-machine interaction

中图分类号: