中国管理科学 ›› 2025, Vol. 33 ›› Issue (5): 99-112.doi: 10.16381/j.cnki.issn1003-207x.2023.1896cstr: 32146.14/j.cnki.issn1003-207x.2023.1896
谷炜1, 刘亚金1, Lu Feng Susan2, 闫相斌3(
)
收稿日期:2023-11-09
修回日期:2024-04-01
出版日期:2025-05-25
发布日期:2025-06-04
通讯作者:
闫相斌
E-mail:xbyan@gdufs.edu.cn
基金资助:
Wei Gu1, Yajin Liu1, Feng Susan Lu2, Xiangbin Yan3(
)
Received:2023-11-09
Revised:2024-04-01
Online:2025-05-25
Published:2025-06-04
Contact:
Xiangbin Yan
E-mail:xbyan@gdufs.edu.cn
摘要:
近年来,由人工智能引领的新一轮科技创新和产业变革,突破了传统管理决策系统受限于数据可获取性和模型可解性的局限性,使得自动化的数据分析和智能化的决策支持成为可能。同时,在数字经济浪潮的推动下,人工智能技术已广泛渗透到企业运营决策的各个环节,这为实现数字化管理创造了新的机遇,同时也给管理决策研究带来了新的挑战。本文从人工智能在不同商业环境的应用、人们对人工智能的感知和人工智能算法的偏见这三个方面对人工智能驱动的管理决策进行梳理、归纳和展望,并提出了未来研究的趋势和方向,为开展更深层次的研究提供了思路,为企业管理者和政策制定者进行科学决策提供参考,推动人工智能驱动管理决策的理论研究与商业实践。
中图分类号:
谷炜,刘亚金,Lu Feng Susan, 等. 人工智能驱动管理决策:应用、感知与偏见[J]. 中国管理科学, 2025, 33(5): 99-112.
Wei Gu,Yajin Liu,Feng Susan Lu, et al. AI-Driven Decision Sciences: Application, Perception and Bias[J]. Chinese Journal of Management Science, 2025, 33(5): 99-112.
表1
人工智能相关研究汇总"
| 研究方向 | 研究领域 | 作者 |
|---|---|---|
应用 (application) | 运营管理 (operation management) | Alley等[ |
市场营销 (marketing) | Ban和Keskin[ | |
会计 (accounting) | Bao等[ | |
金融 (finance) | Alsabah等[ | |
医疗管理 (healthcare management) | Chen[ | |
感知 (perception) | 正面 (trust) | Logg等[ |
负面 (aversion, distrust) | Crolic等[ | |
依据场景 (context-dependent) | Mende等[ | |
偏见 (bias) | 现象 (phenomenon) | Edelman和Luca[ |
来源 (sources) | Obermeyer等[ | |
解决方案 (possible solutions) | Samorani等[ |
| 1 | 任之光,李金,赵海川,等.大数据驱动的管理决策:研究范式与发展领域[J].管理科学学报, 2023, 26(8): 152-158. |
| Ren Z G, Li J, Zhao H C, et al. Big data-driven management and decision sciences:The research paradigm and directions[J]. Journal of Management Sciences in China, 2023, 26(8): 152-158. | |
| 2 | 陈东,秦子洋. 人工智能与包容性增长——来自全球工业机器人使用的证据[J]. 经济研究, 2022, 57(4): 85-102. |
| Chen D, Qin Z Y. Artificial intelligence and inclusive growth: Evidence from international robot data[J]. Economic Research Journal, 2022, 57(4): 85-102. | |
| 3 | 郭凯明,王钰冰. 人工智能技术方向、时间配置结构转型与人类劳动变革远景[J]. 中国工业经济, 2022(12): 33-51. |
| Guo K M, Wang Y B. Direction of artificial intelligence progress, transformation of time allocation and the prospect of human labor evolution[J]. China Industrial Economics, 2022(12): 33-51. | |
| 4 | 王永钦,董雯. 机器人的兴起如何影响中国劳动力市场?——来自制造业上市公司的证据[J]. 经济研究, 2020, 55(10): 159-175. |
| Wang Y Q, Dong W. How the rise of robots has affected China’s labor market? Evidence from China’s listed manufacturing firms[J]. Economic Research Journal, 2020, 55(10): 159-175. | |
| 5 | 刘新生,褚建勋.人工智能的企业道德责任及其规制[J].科学学研究, 2023, 41(4): 586-595. |
| Liu X S, Chu J X. The corporate moral responsibility of artificial intelligence and its regulation[J]. Studies in Science of Science, 2023, 41(4): 586-595. | |
| 6 | Mikalef P, Pappas I O, Krogstie J, et al. Big data analytics capabilities:A systematic literature review and research agenda[J]. Information Systems and E-business Management, 2018, 16: 547-578. |
| 7 | Duan Y, Edwards J S, Dwivedi Y K. Artificial intelligence for decision making in the era of big data-evolution, challenges and research agenda[J]. International Journal of Information Management, 2019, 48: 63-71. |
| 8 | Mele C, Spena T R, Kaartemo V, et al. Smart nudging: How cognitive technologies enable choice architectures for value co-creation[J]. Journal of Business Research, 2021, 129: 949-960. |
| 9 | Gijsbrechts J, Boute R N, Van Mieghem J A, et al. Can deep reinforcement learning improve inventory management? Performance on lost sales, dual-sourcing, and multi-echelon problems[J]. Manufacturing & Service Operations Management, 2022, 24(3): 1349-1368. |
| 10 | 王芳,王宣艺,陈硕. 经济学研究中的机器学习:回顾与展望[J]. 数量经济技术经济研究, 2020, 37(4): 146-164. |
| Wang F, Wang X Y, Chen S. Machine learning in economics research: Review and prospective[J]. Journal of Quantitative & Technological Economics, 2020, 37(4): 146-164. | |
| 11 | 马捷,郝志远. 机器学习视域下融合情感元素的社交网络信息交互度量化分析[J]. 情报学报, 2021, 40(7): 687-696. |
| Ma J, Hao Z Y. Quantitatively analyzing social network information interaction: Integrating the emotional elements from machine learning’s perspective[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(7): 687-696. | |
| 12 | 李舒沁,王灏晨,汪寿阳.人工智能背景下制造业劳动力结构影响研究——以工业机器人发展为例[J].管理评论,2021, 33(3):307-314. |
| Li S Q, Wang H C, Wang S Y. Research on the factors that influence the labor structure of the manufacturing industry in the context of artificial intelligence:Taking the development of industrial robots as an example[J]. Management Review, 2021, 33(3):307-314. | |
| 13 | 李新娥,喻子君,夏静 等.人工智能技术应用下制造业企业就业效应研究——基于101家上市公司的实证检验[J].中国软科学,2021(S1):277-286. |
| Li X E, Yu Z J, Xia J, et al. Research on the employment effect of manufacturing enterprises under the application of artificial intelligence technology: Based on the empirical test of 101 listed companies[J]. China Soft Science, 2021(S1): 277-286. | |
| 14 | Cao Z, Li M, Pavlou P A. AI in business research[J]. Decision Sciences Journal, 2024, 55(6): 518-532. |
| 15 | Ban G Y, Rudin C. The big data newsvendor: Practical insights from machine learning[J]. Operations Research, 2019, 67(1): 90-108. |
| 16 | Chuang H H C, Chou Y C, Oliva R. Cross‐item learning for volatile demand forecasting: An intervention with predictive analytics[J]. Journal of Operations Management, 2021, 67(7): 828-852. |
| 17 | 熊浩,鄢慧丽. 数据驱动外卖平台智能派单的实现机理研究[J]. 南开管理评论, 2022, 25(2): 15-25. |
| Xiong H, Yan H L. Research on the data-driven mechanism of intelligent order dispatching of takeaway platform[J]. Nankai Business Review, 2022, 25(2): 15-25. | |
| 18 | Oroojlooyjadid A, Nazari M R, Snyder L V, et al. A deep q-network for the beer game: Deep reinforcement learning for inventory optimization[J]. Manufacturing & Service Operations Management, 2022, 24(1): 285-304. |
| 19 | Bodendorf F, Sauter M, Franke J. A mixed methods approach to analyze and predict supply disruptions by combining causal inference and deep learning[J]. International Journal of Production Economics, 2023, 256: 108708. |
| 20 | Glaeser C K, Fisher M, Su X. Optimal retail location: Empirical methodology and application to practice: Finalist-2017 m&som practice-based research competition[J]. Manufacturing & Service Operations Management, 2019, 21(1): 86-102. |
| 21 | Senoner J, Netland T, Feuerriegel S. Using explainable artificial intelligence to improve process quality: Evidence from semiconductor manufacturing[J]. Management Science, 2022, 68(8): 5704-5723. |
| 22 | Alley M, Biggs M, Hariss R, et al. Pricing for heterogeneous products: Analytics for ticket reselling[J]. Manufacturing & Service Operations Management, 2023, 25(2): 409-426. |
| 23 | Tong S, Jia N, Luo X, et al. The Janus face of artificial intelligence feedback: Deployment versus disclosure effects on employee performance[J]. Strategic Management Journal, 2021, 42(9): 1600-1631. |
| 24 | Erel I, Stern L H, Tan C, et al. Selecting directors using machine learning[J]. The Review of Financial Studies, 2021, 34(7): 3226-3264. |
| 25 | Ban G Y, Keskin N B. Personalized dynamic pricing with machine learning: High-dimensional features and heterogeneous elasticity[J]. Management Science, 2021, 67(9): 5549-5568. |
| 26 | Yang C, Feng Y, Whinston A. Dynamic pricing and information disclosure for fresh produce: An artificial intelligence approach[J]. Production and Operations Management, 2022, 31(1): 155-171. |
| 27 | Reisenbichler M, Reutterer T, Schweidel D A, et al. Frontiers: Supporting content marketing with natural language generation[J]. Marketing Science, 2022, 41(3): 441-452. |
| 28 | Yoganarasimhan H. Search personalization using machine learning[J]. Management Science, 2020, 66(3): 1045-1070. |
| 29 | 史达,王乐乐,衣博文. 在线评论有用性的深度数据挖掘——基于TripAdvisor的酒店评论数据[J]. 南开管理评论, 2020, 23(5): 64-75. |
| Shi D, Wang L L, Yi B W. Deep data mining for online reviews usefulness: Hotel reviews data on TripAdvisor[J]. Nankai Business Review, 2020, 23(5): 64-75. | |
| 30 | Boughanmi K, Ansari A. Dynamics of musical success: A machine learning approach for multimedia data fusion[J]. Journal of Marketing Research, 2021, 58(6): 1034-1057. |
| 31 | 钱明辉,徐志轩. 基于机器学习的消费者品牌决策偏好动态识别与效果验证研究[J]. 南开管理评论, 2019, 22(3): 66-76. |
| Qian M H, Xu Z X. A study of dynamic recognition of consumer brand decision-making preference based on machine learning method[J]. Nankai Business Review, 2019, 22(3): 66-76. | |
| 32 | Lau R Y K, Zhang W, Xu W. Parallel aspect‐oriented sentiment analysis for sales forecasting with big data[J]. Production and Operations Management, 2018, 27(10): 1775-1794. |
| 33 | 范文芳,王千. 个性化智能推荐对消费者在线冲动购买意愿的影响研究[J]. 管理评论, 2022, 34(12): 146-156. |
| Fan W F, Wang Q. Research on the influence of personalized intelligent recommendation on consumers’online impulse buying intention[J]. Management Review, 2022, 34(12): 146-156. | |
| 34 | Karlinsky-Shichor Y, Netzer O. Automating the b2b salesperson pricing decisions: A human-machine hybrid approach[J]. Marketing Science,2024, 43(1): 138-157. |
| 35 | Schanke S, Burtch G, Ray G. Estimating the impact of “humanizing” customer service chatbots[J]. Information Systems Research, 2021, 32(3): 736-751. |
| 36 | Dwivedi Y K, Pandey N, Currie W, et al. Leveraging ChatGPT and other generative artificial intelligence (AI)-based applications in the hospitality and tourism industry: Practices, challenges and research agenda[J]. International Journal of Contemporary Hospitality Management, 2024, 36(1): 1-12. |
| 37 | Pickard M D, Schuetzler R, Valacich J S, et al. Innovative accounting interviewing: A comparison of real and virtual accounting interviewers[J]. The Accounting Review, 2020, 95(6): 339-366. |
| 38 | Bao Y, Ke B, Li B, et al. Detecting accounting fraud in publicly traded U.S. firms using a machine learning approach[J]. Journal of Accounting Research, 2022, 60(4): 1635-1646. |
| 39 | Brown N C, Crowley R M, Elliott W B. What are you saying?using topic to detect financial misreporting[J]. Journal of Accounting Research, 2020, 58(1): 237-291. |
| 40 | 刘云菁,伍彬,张敏. 上市公司财务舞弊识别模型设计及其应用研究——基于新兴机器学习算法[J]. 数量经济技术经济研究, 2022, 39(7): 152-175. |
| Liu Y J, Wu B, Zhang M. Financial fraud recognition model and application:Based on emerging machine learning algorithms[J]. The Journal of Quantitative & Technical Economics, 2022, 39(7): 152-175. | |
| 41 | 高锦萍,白羽新,高居平,等.人工智能时代的会计伦理:内涵、转向与考量[J].会计研究,2022(3): 17-27. |
| Gao J P, Bai Y X, Gao J P, et al. Accounting ethics in the era of artificial intelligence: Connotation, turn and consideration[J]. Accounting Research, 2022(3): 17-27. | |
| 42 | 张一林,郁芸君,陈珠明. 人工智能、中小企业融资与银行数字化转型[J]. 中国工业经济, 2021(12): 69-87. |
| Zhang Y L, Yu Y J, Chen Z M. Artificial intelligence, SME financing and bank digitalization[J]. China Industrial Economics, 2021(12): 69-87. | |
| 43 | Avramov D, Cheng S, Metzker L. Machine learning vs. economic restrictions: Evidence from stock return predictability[J]. Management Science, 2023, 69(5): 2587-2619. |
| 44 | Alsabah H, Capponi A, Ruiz Lacedelli O, et al. Robo-advising: Learning investors’risk preferences via portfolio choices[J]. Journal of Financial Econometrics, 2021, 19(2): 369-392. |
| 45 | Gu S, Kelly B, Xiu D. Empirical asset pricing via machine learning[J]. The Review of Financial Studies, 2020, 33(5): 2223-2273. |
| 46 | Bianchi D, Büchner M, Tamoni A. Bond risk premiums with machine learning[J]. The Review of Financial Studies, 2021, 34(2): 1046-1089. |
| 47 | 陆瑶,施函青. 我国科技企业融资的决定因素研究——基于科创板企业的机器学习分析[J]. 金融研究, 2022(9): 132-151. |
| Lu Y, Shi H Q. Determinants of financing for high-tech enterprises in China: Machine learning analysis based on the STAR market[J]. Journal of Financial Research, 2022(9): 132-151. | |
| 48 | 许雪晨,田侃.一种基于金融文本情感分析的股票指数预测新方法[J]. 数量经济技术经济研究, 2021, 38(12): 124-145. |
| Xu X C, Tian K. A novel financial text sentiment analysis-based approach for stock index prediction[J]. The Journal of Quantitative & Technical Economics, 2021, 38(12): 124-145. | |
| 49 | Netzer O, Lemaire A, Herzenstein M. When words sweat: Identifying signals for loan default in the text of loan applications[J]. Journal of Marketing Research, 2019, 56(6): 960-980. |
| 50 | Fu R, Huang Y, Singh P V. Crowds, lending, machine, and bias[J]. Information Systems Research, 2021, 32(1): 72-92. |
| 51 | 杨子晖,张平淼,林师涵. 系统性风险与企业财务危机预警——基于前沿机器学习的新视角[J]. 金融研究, 2022(8): 152-170. |
| Yang Z H, Zhang P M, Lin S H. Systemic risk and corporate financial distress forecasting from the new perspective of machine learning[J]. Journal of Financial Research, 2022(8): 152-170. | |
| 52 | Mogaji E, Balakrishnan J, Nwoba A C, et al. Emerging-market consumers’interactions with banking chatbots[J]. Telematics and Informatics, 2021, 65: 101711. |
| 53 | Esteva A, Kuprel B, Novoa R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118. |
| 54 | Chen X, Xie H, Li Z, et al. Information fusion and artificial intelligence for smart healthcare: A bibliometric study[J]. Information Processing & Management, 2023, 60(1): 103113. |
| 55 | Lou B, Wu L. AI on drugs: Can artificial intelligence accelerate drug development? Evidence from a large-scale examination of bio-pharma firms[J]. MIS Quarterly, 2021, 45(3), 1451-1482. |
| 56 | Ganju K K, Atasoy H, McCullough J, et al. The role of decision support systems in attenuating racial biases in healthcare delivery[J]. Management Science, 2020, 66(11): 5171-5181. |
| 57 | Cheng Z, Wang W, Lu J, et al. Classifying the traffic state of urban expressways:A machine-learning approach[J]. Transportation Research Part A: Policy and Practice, 2020, 137: 411-428. |
| 58 | Ko G Y, Shin D, Auh S, et al. Learning outside the classroom during a pandemic: Evidence from an artificial intelligence-based education App[J]. Management Science, 2023, 69(6): 3616-3649. |
| 59 | Chang X, Huang Y, Li M, et al. Efficient detection of environmental violators: a big data approach[J]. Production and Operations Management, 2021, 30(5): 1246-1270. |
| 60 | Zhang S, Mehta N, Singh P V, et al. Frontiers: Can an artificial intelligence algorithm mitigate racial economic inequality?An analysis in the context of airbnb[J]. Marketing Science, 2021, 40(5): 813-820. |
| 61 | 李训虎. 刑事司法人工智能的包容性规制[J]. 中国社会科学, 2021(2): 42-62+205. |
| Li X H. Inclusive regulation of artificial intelligence in criminal justice[J]. Social Sciences in China, 2021 (2): 42-62+205. | |
| 62 | Brynjolfsson E, Hui X, Liu M. Does machine translation affect international trade?Evidence from a large digital platform[J]. Management Science, 2019, 65(12): 5449-5460. |
| 63 | Kawaguchi K. When will workers follow an algorithm?A field experiment with a retail business[J]. Management Science, 2021, 67(3): 1670-1695. |
| 64 | Dietvorst B J, Simmons J P, Massey C.Algorithm aversion: People erroneously avoid algorithms after seeing them err[J]. Journal of Experimental Psychology: General, 2015, 144(1): 114-126. |
| 65 | Filiz I, Judek J R, Lorenz M, et al. Reducing algorithm aversion through experience[J]. Journal of Behavioral and Experimental Finance, 2021, 31: 100524. |
| 66 | Logg J M, Minson J A, Moore D A. Algorithm appreciation: People prefer algorithmic to human judgment[J]. Organizational Behavior and Human Decision Processes, 2019, 151: 90-103. |
| 67 | Liu H, Wang Y, Fan W, et al. Trustworthy AI: A computational perspective[J]. ACM Transactions on Intelligent Systems and Technology, 2022, 14(1): 1-59. |
| 68 | Crolic C, Thomaz F, Hadi R, et al. Blame the bot: Anthropomorphism and anger in customer-chatbot interactions[J]. Journal of Marketing, 2022, 86(1): 132-148. |
| 69 | Kyung N, Kwon H E. Rationally trust, but emotionally? The roles of cognitive and affective trust in laypeople’s acceptance of AI for preventive care operations[J]. Production and Operations Management, 2022, DOI: 10.1111/poms.13785 . |
| 70 | Commerford B P, Dennis S A, Joe J R, et al. Man versus machine: Complex estimates and auditor reliance on artificial intelligence[J]. Journal of Accounting Research, 2022, 60(1): 171-201. |
| 71 | Kim J H, Kim M, Kwak D W, et al. Home-tutoring services assisted with technology: Investigating the role of artificial intelligence using a randomized field experiment[J]. Journal of Marketing Research, 2022, 59(1): 79-96. |
| 72 | 吴继飞,于洪彦,朱翊敏,等. 人工智能推荐对消费者采纳意愿的影响[J]. 管理科学, 2020, 33(5): 29-43. |
| Wu J F, Yu H Y, Zhu Y M, et al. Impact of artificial intelligence recommendation on consumers’willingness to adopt[J]. Journal of Management Science, 2020, 33(5): 29-43. | |
| 73 | Mende M, Scott M L, van Doorn J, et al. Service robots rising: How humanoid robots influence service experiences and elicit compensatory consumer responses[J]. Journal of Marketing Research, 2019, 56(4): 535-556. |
| 74 | Garvey A M, Kim T W, Duhachek A. Bad news? Send an AI. Good news?Send a human[J]. Journal of Marketing, 2023, 87(1): 10-25. |
| 75 | 王欣,朱虹,姜帝,等. 人工智能产品“协助者”与“替代者”形象对消费者评价的影响[J]. 南开管理评论, 2021, 24(6): 39-49. |
| Wang X, Zhu H, Jiang D, et al. The influence of “facilitators”vs.“substitutes” image of artificial intelligence products on consumer evaluation[J]. Nankai Business Review, 2021, 24(6): 39-49. | |
| 76 | Yalcin G, Lim S, Puntoni S, et al. Thumbs up or down: Consumer reactions to decisions by algorithms versus humans[J]. Journal of Marketing Research, 2022, 59(4): 696-717. |
| 77 | Longoni C, Cian L. Artificial intelligence in utilitarian vs. hedonic contexts: The “word-of-machine” effect[J]. Journal of Marketing, 2022, 86(1): 91-108. |
| 78 | Ge R, Zheng Z, Tian X, et al. Human-robot interaction: When investors adjust the usage of robo-advisors in peer-to-peer lending[J]. Information Systems Research, 2021, 32(3): 774-785. |
| 79 | Lebovitz S, Lifshitz-Assaf H, Levina N. To engage or not to engage with AI for critical judgments: How professionals deal with opacity when using AI for medical diagnosis[J]. Organization Science, 2022, 33(1): 126-148. |
| 80 | Shin D. The effects of explainability and causability on perception, trust, and acceptance: Implications for explainable AI[J]. International Journal of Human-Computer Studies, 2021, 146: 102551. |
| 81 | Dietvorst B J, Simmons J P, Massey C. Overcoming algorithm aversion: people will use imperfect algorithms if they can (even slightly) modify them[J]. Management Science, 2018, 64(3): 1155-1170. |
| 82 | Lehmann C A, Haubitz C B, Fügener A, et al. The risk of algorithm transparency: How algorithm complexity drives the effects on the use of advice[J]. Production and Operations Management, 2022, 31(9): 3419-3434. |
| 83 | Sun S, Lu L X, Lu S F, et al. When peers matter more: The dominance of social influence over algorithm accuracy in patient decision making[J]. Tuck School of Business Working Paper Forthcoming, 2024, DOI: http://dx.doi.org/10.2139/ssrn.4966406 . |
| 84 | Edelman B, Luca M, Svirsky D. Racial discrimination in the sharing economy: Evidence from a field experiment[J]. American Economic Journal: Applied Economics, 2017, 9(2): 1-22. |
| 85 | Fuster A, Goldsmith‐Pinkham P, Ramadorai T, et al. Predictably unequal?The effects of machine learning on credit markets[J]. The Journal of Finance, 2022, 77(1): 5-47. |
| 86 | Lambrecht A, Tucker C. Algorithmic bias? An empirical study of apparent gender-based discrimination in the display of STEM career ads[J]. Management Science, 2019, 65(7): 2966-2981. |
| 87 | Obermeyer Z, Powers B, Vogeli C, et al. Dissecting racial bias in an algorithm used to manage the health of populations[J]. Science, 2019, 366(6464): 447-453. |
| 88 | Choudhury P, Starr E, Agarwal R. Machine learning and human capital complementarities: Experimental evidence on bias mitigation[J]. Strategic Management Journal, 2020, 41(8): 1381-1411. |
| 89 | Tambe P, Cappelli P, Yakubovich V. Artificial intelligence in human resources management: Challenges and a path forward[J]. California Management Review, 2019, 61(4): 15-42. |
| 90 | 冉雅璇,李志强,刘佳妮,等.大数据时代社会科学研究方法的拓展——基于词嵌入技术的文本分析的应用[J].南开管理评论, 2022, 25(2): 47-58. |
| Ran Y X, Li Z Q, Liu J N, et al. The development of social science research methods in the era of big data: An application of the word embeddings technique[J]. Nankai Business Review, 2022, 25(2): 47-58. | |
| 91 | Samorani M, Harris S L, Blount L G, et al. Overbooked and overlooked: Machine learning and racial bias in medical appointment scheduling[J]. Manufacturing & Service Operations Management, 2022, 24(6): 2825-2842. |
| 92 | Fu R, Aseri M, Singh P V, et al. “Un” fair machine learning algorithms[J]. Management Science, 2022, 68(6): 4173-4195. |
| 93 | 王林辉,胡晟明,董直庆. 人工智能技术会诱致劳动收入不平等吗——模型推演与分类评估[J]. 中国工业经济, 2020(4): 97-115. |
| Wang L H, Hu S M, Dong Z Q, Will artificial intelligence technology induce labor income inequality:Model deduction and classification evaluation[J]. China Industrial Economics, 2020(4): 97-115. | |
| 94 | 陈东,姚笛,郑玉璐.工业机器人应用、超级明星企业与劳动收入份额变动:“利好”与“隐忧”并存[J].中国工业经济,2024(5): 97-115. |
| Chen D, Yao D, Zheng Y L. Industrial robot, superstar firms and labor income share changes: Coexistence of “boon” and “worry”[J]. China Industrial Economics, 2024(5): 97-115. | |
| 95 | 陈媛媛,张竞,周亚虹.工业机器人与劳动力的空间配置[J].经济研究, 2022, 57(1): 172-188. |
| Chen Y Y, Zhang J, Zhou Y H. Industrial robots and spatial allocation of labor[J]. Economic Research Journal, 2022, 57(1): 172-188. | |
| 96 | 王林辉,钱圆圆,宋冬林,等.机器人应用的岗位转换效应及就业敏感性群体特征——来自微观个体层面的经验证据[J].经济研究, 2023, 58(7): 69-85. |
| Wang L H, Qian Y Y, Song D L, et al. The job transition effects and employment sensitivity among specific groups of robot applications: Empirical evidence from a micro-individual level perspective[J]. Economic Research Journal, 2023,58(7): 69-85. | |
| 97 | 王晓娟,朱喜安,王颖. 工业机器人应用对制造业就业的影响效应研究[J]. 数量经济技术经济研究, 2022, 39(4): 88-106. |
| Wang X J, Zhu X A, Wang Y. The impact of robot application on manufacturing employment[J]. The Journal of Quantitative & Technical Economics, 2022, 39(4): 88-106. | |
| 98 | 郭峰,陶旭辉. 机器学习与社会科学中的因果关系:一个文献综述[J]. 经济学(季刊), 2023, 23(1): 1-17. |
| Guo F, Tao X H. Machine learning and causal relationship in social science: A literature review[J]. China Economic Quarterly, 2023, 23(1): 1-17. | |
| 99 | 吴俊杰,刘冠男,王静远,等. 数据智能:趋势与挑战[J]. 系统工程理论与实践, 2020, 40(8): 2116-2149. |
| Wu J J, Liu G N, Wang J Y, et al. Data intelligence: Trends and challenges[J]. Systems Engineering-Theory & Practice, 2020, 40(8): 2116-2149. | |
| 100 | Li M, Li T. AI automation and retailer regret in supply chains[J]. Production and Operations Management, 2022, 31(1): 83-97. |
| 101 | 余伊琦,冯羽,盖嘉. 不确定情境下消费者对人工智能和人工服务的运气感知与相对偏好[J]. 南开管理评论, 2022, 25(4): 155-165. |
| Yu Y Q, Feng Y, Gai J. Preferences for AI versus human under uncertainty: The role of perceived luck[J]. Nankai Business Review,2022,25(4): 155-165. | |
| 102 | Cui R, Li M, Zhang S. AI and procurement[J]. Manufacturing & Service Operations Management, 2022, 24(2): 691-706. |
| 103 | 吴小龙,肖静华,吴记. 人与AI协同的新型组织学习:基于场景视角的多案例研究[J]. 中国工业经济, 2022(2): 175-192. |
| Wu X L, Xiao J H, Wu J. New organizational learning for human-AI collaboration: A multi-case study from a scenario perspective[J]. China Industrial Economics, 2022(2): 175-192. | |
| 104 | Fügener A, Grahl J, Gupta A, et al. Cognitive challenges in human-artificial intelligence collaboration: Investigating the path toward productive delegation[J]. Information Systems Research, 2022, 33(2): 678-696. |
| 105 | 程聪,严璐璐,曹烈冰.大数据决策中数据结构转变:基于杭州城市大脑“交通治堵”应用场景的案例分析[J].管理世界, 2023, 39(12): 165-185. |
| Cheng C, Yan L L, Cao L B. Data structure transformation in big data decision-making: A case study based on the hangzhou city brain’s “traffic congestion alleviation” application scenario[J]. Journal of Management World, 2023, 39(12): 165-185. | |
| 106 | 孔祥维,王子明,王明征,等. 人工智能使能系统的可信决策:进展与挑战[J]. 管理工程学报, 2022, 36(6): 1-14. |
| Kong X W, Wang Z M, Wang M Z, et al. Trustworthy decision-making in artificial intelligence-enabled systems: Progress and challenges[J]. Journal of Industrial Engineering and Engineering Management, 2022, 36(6): 1-14. | |
| 107 | 曾大军,张柱,梁嘉琦,等. 机器行为与人机协同决策理论和方法[J]. 管理科学, 2021, 34(6): 55-59. |
| Zeng D J, Zhang Z, Liang J Q, et al. Machine behavior and human-machine collaboration decision: Theory and methods[J]. Journal of Management Science, 2021, 34(6): 55-59. | |
| 108 | Athey S, Imbens G W. Machine learning methods that economists should know about[J]. Annual Review of Economics, 2019, 11: 685-725. |
| 109 | 吴丹,刘静. 人工智能时代的算法素养:内涵剖析与能力框架构建[J]. 中国图书馆学报, 2022, 48(6): 43-56. |
| Wu D, Liu J. Algorithmic literacy in the era of artificial intelligence: Connotation analysis and competency framework construction[J]. Journal of Library Science in China, 2022, 48(6): 43-56. | |
| 110 | 姜李丹,薛澜. 我国新一代人工智能治理的时代挑战与范式变革[J]. 公共管理学报, 2022, 19(2): 1-11. |
| Jiang L D, Xue L. The current challenges and paradigm transformation of new-generation AI governance in China[J]. Journal of Public Management, 2022, 19(2): 1-11. | |
| 111 | 宋晓兵,何夏楠. 人工智能定价对消费者价格公平感知的影响[J]. 管理科学, 2020, 33(5): 3-16. |
| Song X B, He X N. The effect of artificial intelligence pricing on consumers’perceived price fairness[J]. Journal of Management Science, 2020, 33(5): 3-16. | |
| 112 | Sun J, Zhang D J, Hu H, et al. Predicting human discretion to adjust algorithmic prescription: A large-scale field experiment in warehouse operations[J]. Management Science, 2022, 68(2): 846-865. |
| 113 | Srinivasan R, Sarial-Abi G. When algorithms fail: Consumers’responses to brand harm crises caused by algorithm errors[J]. Journal of Marketing, 2021, 85(5): 74-91. |
| 114 | Longoni C, Cian L, Kyung E J. Algorithmic transference: People overgeneralize failures of AI in the government[J]. Journal of Marketing Research, 2023, 60(1): 170-188. |
| 115 | 贾诗威,闫慧. 算法偏见概念、哲理基础与后果的系统回顾[J]. 中国图书馆学报, 2022, 48(6): 57-76. |
| Jia S W, Yan H. A systematic review of concept, philosophy foundation and impacts of algorithmic bias[J]. Journal of Library Science in China, 2022, 48(6): 57-76. | |
| 116 | 季冬梅. 人工智能透明性原则的制度构建:范式选择与要素分析[J]. 科学学研究, 2022, 40(4): 611-618. |
| Ji D M. Institutional construction of the transparency principle of artificial intelligence: Paradigm selection and elements analysis[J]. Studies in Science of Science, 2022, 40(4): 611-618. | |
| 117 | 杨善林,李霄剑,张强,等. 人工智能与管理变革[J]. 中国管理科学, 2023, 31(6): 1-11. |
| Yang S L, Li X J, Zhang Q, et al. Artificial intelligence and management transformation[J]. Chinese Journal of Management Science, 2023, 31(6): 1-11. |
| [1] | 董曼茹, 唐晓彬. 基于双层Attention机制的LSTM模型对CPI的预测研究[J]. 中国管理科学, 2025, 33(5): 113-123. |
| [2] | 谭索怡, 王梦宁, 田野, 刘建国, 吕欣. 数据驱动的贫困识别、分类与预测方法研究[J]. 中国管理科学, 2025, 33(5): 124-137. |
| [3] | 葛伟, 肖涵. 人工智能、居民消费与经济奇点[J]. 中国管理科学, 2025, 33(3): 93-106. |
| [4] | 石峰, 杨扬, 袁韵, 贾建民. 人工智能驱动下的营销变革[J]. 中国管理科学, 2025, 33(1): 111-123. |
| [5] | 李星毅, 李仲飞, 李其谦, 刘昱君, 唐文金. 基于机器学习的资产收益率预测研究综述[J]. 中国管理科学, 2025, 33(1): 311-322. |
| [6] | 胡祥培, 周雅娴. 基于生成式人工智能的经济管理学科相关研究综述[J]. 中国管理科学, 2025, 33(1): 76-97. |
| [7] | 雷欣南,林乐凡,肖斌卿,俞红海. 小微企业违约特征再探索:基于SHAP解释方法的机器学习模型[J]. 中国管理科学, 2024, 32(5): 1-12. |
| [8] | 严雨婷,毕文杰. 基于XGBoost算法的数据驱动单周期报童问题研究[J]. 中国管理科学, 2024, 32(1): 260-267. |
| [9] | 杨善林, 李霄剑, 张强, 焦建玲, 杨昌辉. 人工智能与管理变革[J]. 中国管理科学, 2023, 31(6): 1-11. |
| [10] | 宋金波, 周禹杉, 何秋映. 情绪负荷对网络问政平台运作服务质量和效率的影响—来自文本数据的证据[J]. 中国管理科学, 2023, 31(3): 133-142. |
| [11] | 梁墨, 李鸿翔, 张顺明. 基于ST预测的财务困境测度与股票横截面收益[J]. 中国管理科学, 2023, 31(2): 138-149. |
| [12] | 张鹏,党世力,黄梅雨,李璟欣. 基于机器学习预测股票收益率的两步骤M-SV投资组合优化[J]. 中国管理科学, 2023, 31(12): 96-106. |
| [13] | 张键,谢庭玉,彭鹏,王宏伟. 制造业多价值链协同数据空间产品知识属性与销量预测关联性研究[J]. 中国管理科学, 2023, 31(11): 341-348. |
| [14] | 牛东晓,斯琴卓娅,王董禹,许晓敏,张焕粉. 基于数据挖掘的电力装备企业多价值链协同数据预处理方法研究及应用[J]. 中国管理科学, 2023, 31(11): 321-331. |
| [15] | 刘德文, 高维和, 闵凉宇. 可读性和吸引性对商品销量的影响——基于电影简介的文本分析[J]. 中国管理科学, 2022, 30(6): 167-177. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
||