中国管理科学 ›› 2022, Vol. 30 ›› Issue (4): 30-41.doi: 10.16381/j.cnki.issn1003-207x.2020.0488cstr: 32146.14.j.cnki.issn1003-207x.2020.0488
梁超1, 魏宇2, 马锋1, 李霞飞1
收稿日期:2020-03-24
修回日期:2020-05-19
出版日期:2022-04-20
发布日期:2022-04-26
通讯作者:
魏宇(1975-),男(汉族),四川攀枝花人,云南财经大学金融学院,教授,研究方向:金融工程与风险管理、能源金融,Email:weiyusy@126.com.
E-mail:weiyusy@126.com
基金资助:LIANG Chao1, WEI Yu2, MA Feng1, LI Xia-fei1
Received:2020-03-24
Revised:2020-05-19
Online:2022-04-20
Published:2022-04-26
Contact:
魏宇
E-mail:weiyusy@126.com
摘要: 黄金作为重要的避险资产,对其价格波动的定量描述和预测对于各类投资者的风险管理决策意义重大。基于标准回归预测模型,采用主成分分析、组合预测和两种主流的模型缩减方法(Elastic net 和Lasso)构建新的波动率预测模型,探究哪种方法能够更有效地利用多个预测因子信息。进一步,运用模型信度集合(model confidence set,MCS)、样本外R2和方向测试(Direction-of-Change,DoC)三种评价方法检验新模型的样本外预测精度。实证结果显示:不论是基于哪一种评价方法,相比其它竞争模型,两种缩减模型的样本外预测精度均为最优,可以为我国黄金期货价格的波动率预测提供可靠保障。
中图分类号:
梁超,魏宇,马锋, 等. 我国黄金期货价格波动率预测研究:来自模型缩减方法的新证据[J]. 中国管理科学, 2022, 30(4): 30-41.
LIANG Chao,WEI Yu,MA Feng, et al. Forecasting Volatility of China Gold Futures Price: New Evidence from Model Shrinkage Methods[J]. Chinese Journal of Management Science, 2022, 30(4): 30-41.
| [1] 龚旭, 曹杰, 文凤华, 等. 基于杠杆效应和结构突变的HAR族模型及其对股市波动率的预测研究[J]. 系统工程理论与实践, 2020, 40(5): 1113-1133.Gong Xu, Cao Jie, Wen Fenghua, et al. The HAR-type models with leverage and structural breaks and their applications to the volatility forecasting of stock market[J]. Systems Engineering Theory & Practice, 2020, 40(5): 1113-1133. [2] 郭晨, 吴君民. 我国银行业二元风险混合传染效应研究[J]. 云南财经大学学报, 2019, 35(7): 64-76.Guo Chen, Wu Junmin. Research on the mixed contagion effect of dual risks in China’s banking industry[J]. Journal of Yunnan University of Finance and Economics, 2019, 35(7): 64-76. [3] 杨科, 陈浪南. 股市波动率的短期预测模型和预测精度评价[J]. 管理科学学报, 2012, 15(5): 19-31.Yang Ke, Chen Langnan. Short-term volatility forecast model and its performance evaluation[J]. Journal of Management Sciences in China, 2012, 15(5): 19-31. [4] 徐欣, 徐惟. 银行杠杆、同业业务创新与系统性风险[J]. 云南财经大学学报, 2019, 35(11): 49-58.Xu Xin, Xu Wei. Bank leverage, interbank business innovation and systematic risk[J]. Journal of Yunnan University of Finance and Economics, 2019, 35(11): 49-58. [5] 徐巧玲. 劳动收入、不确定风险与家庭金融资产选择[J]. 云南财经大学学报, 2019, 35(5): 75-86.Xu Qiaoling. Labor Income,Uncertain risks and the selection of family financial assets[J]. Journal of Yunnan University of Finance and Economics, 2019, 35(5): 75-86. [6] 郭彦峰, 肖倬. 中美黄金市场的价格发现和动态条件相关性研究[J]. 国际金融研究, 2009(11): 75-83.Guo Yanfeng,Xiao Zhuo. The study of price discov-ery and dynamic correlation coefficients between the Chinese and American gold markets[J]. Studies of International Finance,2009(11): 75-83. [7] 冯辉, 张蜀林. 国际黄金期货价格决定要素的实证分析[J]. 中国管理科学, 2012, 20(S1): 424-428.Feng Hui, Zhang Shulin. The empirical analysis about the determinants of international gold futures prices[J]. Chinese Journal of Management Science, 2012, 20(S1): 424-428. [8] Liu Sun, Tang Tingfei, McKenzie A M, et al. Low-frequency volatility in China’s gold futures market and its macroeconomic determinants[J]. Mathematical Problems in Engineering, 2015. [9] Smales L A. Commodity market volatility in the presence of US and Chinese macroeconomic news[J]. Journal of Commodity Markets, 2017, 7: 15-27. [10] 刘金娥, 高佳辉. 投资者情绪与黄金期货价格动态关系研究[J]. 价格理论与实践, 2017(9): 80-83.Liu Jiner, Guo Jiahui. Analysis on investor sentiment and gold futures price fluctuation[J]. Price:Theory & Practice, 2017(09): 80-83. [11] Luo Xingguo, Qin Shihua, Ye Zinan. The information content of implied volatility and jumps in forecasting volatility: Evidence from the Shanghai gold futures market[J]. Finance Research Letters, 2016, 19: 105-111. [12] Wei Yu, Liang Chao, Li Yan, et al. Can CBOE gold and silver implied volatility help to forecast gold futures volatility in China? Evidence based on HAR and Ridge regression models[J]. Finance Research Letters, 2020, 35: 101287. [13] Santamaría-Bonfil G, Frausto-Solís J, Vázquez-Rodarte I. Volatility forecasting using support vector regression and a hybrid genetic algorithm[J]. Computational Economics, 2015, 45(1): 111-133. [14] Ma Feng, Liu Jing, Wahab M I M, et al. Forecasting the aggregate oil price volatility in a data-rich environment[J]. Economic Modelling, 2018, 72: 320-332. [15] Zhang Yaojie, Ma Feng, Wang Yudong. Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?[J]. Journal of Empirical Finance, 2019, 54: 97-117. [16] Rapach D E, Strauss J K, Zhou Guofu. Out-of-sample equity premium prediction: Combination forecasts and links to the real economy[J]. The Review of Financial Studies, 2010, 23(2): 821-862. [17] Andersen T G, Bollerslev T. Answering the skeptics: Yes, standard volatility models do provide accurate forecasts[J]. International economic review, 1998: 885-905. [18] Liu L Y, Patton A J, Sheppard K. Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes[J]. Journal of Econometrics, 2015, 187(1): 293-311. [19] Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58(1): 267-288. [20] Zou Hui, Hastie T. Regularization and variable selection via the elastic net[J]. Journal of the royal statistical society: series B (statistical methodology), 2005, 67(2): 301-320. [21] Hansen P R. A test for superior predictive ability[J]. Journal of Business & Economic Statistics, 2005, 23(4): 365-380. [22] Hansen P R, Lunde A, Nason J M. The model confidence set[J]. Econometrica, 2011, 79(2): 453-497. [23] 魏宇, 马锋, 黄登仕. 多分形波动率预测模型及其MCS检验[J]. 管理科学学报, 2015, 18(8): 61-72.Wei Yu, Ma Feng, Huang Dengshi. Multi-fractal volatility forecasting model and its MCS test[J]. Journal of Management Sciences in China, 2015, 18(8): 61-72. [24] 雷立坤, 余江, 魏宇, 等. 经济政策不确定性与我国股市波动率预测研究[J]. 管理科学学报, 2018, 21(6): 88-98.Lei Likun,Yu Jiang,Wei Yu,et al. Forecasting volatility of Chinese stock market with economic policy uncertainty[J]. Journal of Management Sciences in China,2018,21(6): 88-98. [25] Clark T E, West K D. Approximately normal tests for equal predictive accuracy in nested models[J]. Journal of econometrics, 2007, 138(1): 291-311. [26] Degiannakis S, Filis G. Forecasting oil price realized volatility using information channels from other asset classes[J]. Journal of International Money and Finance, 2017, 76: 28-49. [27] Pesaran M H, Timmermann A. A simple nonparametric test of predictive performance[J]. Journal of Business & Economic Statistics, 1992, 10(4): 461-465. |
| [1] | 罗鹏飞, 姚彦铭, 谭英贤. 突发公共卫生事件下企业委托代理问题与最优资本结构[J]. 中国管理科学, 2025, 33(10): 47-56. |
| [2] | 叶彦艺, 杨晓光. 股票市场知情交易如何影响信用债利差[J]. 中国管理科学, 2025, 33(9): 1-10. |
| [3] | 甘柳, 蔡颖俐, 徐明玉, 谭英贤. 二级债券市场信息获取与可转债融资[J]. 中国管理科学, 2025, 33(9): 22-32. |
| [4] | 姚银红, 王晓旭, 陈炜, 陈振松. 基于Transformer-LSTM分位数回归的全球股市极端风险溢出研究[J]. 中国管理科学, 2025, 33(8): 1-13. |
| [5] | 吴伟平, 林雨, 金成能, 唐振鹏. 随机市场深度下基于风险管理和交易约束的最优执行问题[J]. 中国管理科学, 2025, 33(8): 14-25. |
| [6] | 颜镜洲, 李仲飞, 毛杰, 李星毅. 模糊波动下的策略交易和市场质量[J]. 中国管理科学, 2025, 33(8): 26-36. |
| [7] | 张维, 陈卓, 冯绪, 熊熊, 张永杰. 金融系统工程在中国:2010-2024[J]. 中国管理科学, 2025, 33(7): 11-23. |
| [8] | 田军, 董赞强, 李雅丽. 基于预付账款融资模式的供应链融资策略研究[J]. 中国管理科学, 2025, 33(7): 272-283. |
| [9] | 罗鹏飞, 刘新乐, 陆婷, 张勇. 碳减排下的企业并购决策[J]. 中国管理科学, 2025, 33(7): 337-345. |
| [10] | 杨科, 刘鑫, 田凤平. 中国与其他主要新兴市场国家间股市极端风险的跨市场传染[J]. 中国管理科学, 2025, 33(7): 44-53. |
| [11] | 文璐, 冯玲. 动态政府干预下银行风险传染与最优救助决策研究[J]. 中国管理科学, 2025, 33(6): 37-48. |
| [12] | 欧阳资生, 周学伟. 中国金融机构系统性风险回测与关联研究[J]. 中国管理科学, 2025, 33(6): 14-26. |
| [13] | 赵志明, 潘琼. 债权激励对公司再融资的影响研究[J]. 中国管理科学, 2025, 33(6): 27-36. |
| [14] | 谭春萍, 秦学志, 尚勤, 王文华, 林先伟. 企业财务困境的激励相容式组合纾解策略[J]. 中国管理科学, 2025, 33(5): 13-25. |
| [15] | 于辉, 王霜. 供应链金融:企业如何实现“鱼与熊掌”兼得?[J]. 中国管理科学, 2025, 33(5): 280-289. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
||