中国管理科学 ›› 2022, Vol. 30 ›› Issue (1): 77-87.doi: 10.16381/j.cnki.issn1003-207x.2019.1105cstr: 32146.14.j.cnki.issn1003-207x.2019.1105
鲁万波, 亢晶浩
收稿日期:2019-07-28
修回日期:2020-03-04
出版日期:2022-01-20
发布日期:2022-01-29
通讯作者:
鲁万波(1977-),男(汉),贵州贵阳人,西南财经大学统计学院,教授、博士生导师,研究方向:金融计量、风险管理,Email:luwb@swufe.edu.cn.
E-mail:luwb@swufe.edu.cn
基金资助:LU Wan-bo, KANG Jing-hao
Received:2019-07-28
Revised:2020-03-04
Online:2022-01-20
Published:2022-01-29
Contact:
鲁万波
E-mail:luwb@swufe.edu.cn
摘要: 假定日收益率服从多元有偏学生t分布、已实现协方差矩阵服从矩阵F分布,本文构建了一种新的得分驱动模型:GAS-SKST-F模型。在该有偏厚尾多元波动率模型中,我们基于广义自回归得分(GAS)模型的基本思想对收益率和已实现协方差矩阵进行联合动态设定,协方差矩阵的更新过程依赖于收益率分布和已实现协方差矩阵分布联合似然函数的得分函数。已实现协方差测度在协方差矩阵的更新过程中发挥了重要的作用。基于20支上证50成分股高频数据的实证分析研究结果显示,与GAS-N-Wishart模型和GAS-tF模型相比,无论样本内还是样本外,GAS-SKST-F模型有着更加良好的样本内估计和样本外预测能力。
中图分类号:
鲁万波,亢晶浩. GAS-SKST-F模型及其在高频多元波动率预测中的应用[J]. 中国管理科学, 2022, 30(1): 77-87.
LU Wan-bo,KANG Jing-hao. GAS-SKST-F Model and Its Application in High Frequency Multivariate Volatility Forecast[J]. Chinese Journal of Management Science, 2022, 30(1): 77-87.
| [1] Bauwens L, Laurent S, Rombouts J V K. Multivariate GARCH models: A survey[J]. Journal of Applied Econometrics,2006,21(1):79-109. [2] Andersen T G, Bollerslev T, Diebold F X, et al. Modeling and forecasting realized volatility[J]. Econometrica,2003,71(5): 579-625. [3] Engle R F, Gallo G M. A multiple indicators model for volatility using intra-daily data[J]. Journal of Econometrics,2006,131(3):3-27. [4] Shephard N, Sheppard K. Realising the future: forecasting with high-frequency-based volatility (HEAVY) models[J]. Journal of Applied Econometrics,2010,25(2):197-231. [5] Hansen P R, Huang Z, Shek H H. Realized GARCH: A joint model of returns and realized measures of volatility[J]. Journal of Applied Econometrics,2012,27(6):877-906. [6] 马锋,魏宇,黄登仕. 基于符号收益和跳跃变差的高频波动率模型[J]. 管理科学学报, 2017, 20(10):36-48.Ma Feng, Wei Yu, Huang Dengshi. Forecasting the realized volatility based on the signed return and signed jump variation[J]. Journal of Management Sciences in China,2017, 20(10):36-48. [7] 吴鑫育,李心丹,马超群. 门限已实现随机波动率模型及其实证研究[J]. 中国管理科学, 2017, 25(3): 10-19.Wu Xinyu, Li Xindan, Ma Chaoqun. Threshold realized stochastic volatility model and its empirical test[J]. Chinese Journal of Management Science,2017,25(3):10-19. [8] Golosnoy V, Gribisch B, Liesenfeld R. The conditional autoregressive wishart model for multivariate stock market volatility[J]. Journal of Econometrics,2012,167(1):211-223. [9] Paolo G, Hansen P R, Janus P, et al.Realized Wishart-GARCH: A score-driven multi-asset volatility model[J]. Journal of Financial Econometrics, 2019, 17(1):1-32. [10] Opschoor A, Janus P, Lucas A, et al. New HEAVY models for fat-tailed realized covariances and returns[J]. Journal of Business and Economic Statistics, 2018,36(4): 643-657. [11] 罗嘉雯, 陈浪南.多国股票市场的高频波动相关性研究[J]. 中国管理科学, 2018, 26(2):116-125.Luo Jiawen, Chen Langnan. The volatility co-movement of various stock markets based on high-frequency data[J].Chinese Journal of Management Science,2018,26(2):116-125. [12] Creal D, Koopman S J, André Lucas. Generalized autoregressive score models with applications[J]. Journal of Applied Econometrics, 2013, 28(5):777-795. [13] Blasques F, Koopman S J, LucasA. Information theoretic optimality of observation driven time series models for continuous responses[J]. Biometrika, 2015, 102(2):325-343. [14] Lucas A, Schwaab B, Zhang X. Conditional Euro area sovereign default risk[J]. Journal of Business and Economic Statistics, 2014, 32(2):271-284. [15] Creal D, Schwaab B, Koopman S, et al. Observation driven mixed measurement dynamic factor models with an application to credit risk[J]. Review of Economics and Statistics, 2014,96(5):898-915. [16] 王天一,黄卓.Realized GAS-GARCH及其在VaR预测中的应用[J]. 管理科学学报,2015, 18(5):79-86.Wang Tianyi, Huang Zhuo. Realized GAS-GARCH model and its application in Value-at-Risk forecast[J]. Journal of Management Sciences in China,2015, 18(5):79-86. [17] Oh D H, Patton A J. Time-varying systemic risk:Evidence from a dynamic copula model of CDS spreads[J]. Journal of Business andEconomic Statistics, 2018, 36(2):181-195. [18] 沈根祥, 邹欣悦.已实现波动GAS-HEAVY模型及其实证研究[J]. 中国管理科学, 2019, 27(1):1-10.Shen Genxiang, Zou Xinyue. GAS-HEAVY model for realized measures of volatility and returns[J]. Chinese Journal of Management Science, 2019, 27(1):1-10. [19] Lambert P, Laurent S. Modelling financial time series using GARCH-type models with a skewed student distribution for the innovations[R]. Working Paper,Université de Liège, 2001. [20] Gao Chunting, Zhou Xiaohua. Forecasting VaR and ES using dynamic conditional score models and skew student distribution [J]. Economic Modelling, 2016, 53:216-223. [21] Bauwens L, Laurent, S. A new class of multivariate skew densities with application to generalized autoregressive conditional heteroscedasticity models[J].Journal of Business and Economic Statistics, 2005,23(3):346-354. [22] Blasques F, Koopman S J, Lucas A. Maximum likelihood estimation for score-driven models[R]. Working Paper, Tinbergen Institute, 2017. |
| [1] | 姚银红, 王晓旭, 陈炜, 陈振松. 基于Transformer-LSTM分位数回归的全球股市极端风险溢出研究[J]. 中国管理科学, 2025, 33(8): 1-13. |
| [2] | 吴伟平, 林雨, 金成能, 唐振鹏. 随机市场深度下基于风险管理和交易约束的最优执行问题[J]. 中国管理科学, 2025, 33(8): 14-25. |
| [3] | 田军, 董赞强, 李雅丽. 基于预付账款融资模式的供应链融资策略研究[J]. 中国管理科学, 2025, 33(7): 272-283. |
| [4] | 杨科, 刘鑫, 田凤平. 中国与其他主要新兴市场国家间股市极端风险的跨市场传染[J]. 中国管理科学, 2025, 33(7): 44-53. |
| [5] | 欧阳资生, 周学伟. 中国金融机构系统性风险回测与关联研究[J]. 中国管理科学, 2025, 33(6): 14-26. |
| [6] | 沈根祥, 周泽峰. 拟得分驱动条件异方差自回归极差模型及其实证研究[J]. 中国管理科学, 2025, 33(5): 34-44. |
| [7] | 冯浩原, 吴颉, 于安琪, 郭琨. 杠杆交易会提高股票市场的流动性吗?——基于微观个股层面的实证分析[J]. 中国管理科学, 2025, 33(4): 1-11. |
| [8] | 姚海祥, 刘秋瑜, 杨晓光. 增强还是减弱:新型金融与传统金融行业之间系统性风险溢出[J]. 中国管理科学, 2025, 33(3): 1-12. |
| [9] | 王纲金, 马欣宇, 谢赤. 基于尾部风险溢出网络的全球外汇市场关联性研究[J]. 中国管理科学, 2025, 33(3): 13-23. |
| [10] | 许帅, 邵帅, 何贤杰. 业绩说明会前瞻性信息对分析师盈余预测准确性的影响[J]. 中国管理科学, 2025, 33(3): 34-44. |
| [11] | 孙庆文, 靳玉, 郑立梅, 孙子涵. 企业净资产收益率操纵度量模型与识别方法[J]. 中国管理科学, 2025, 33(2): 1-15. |
| [12] | 胡玉真, 刘建霞. 基于消冗时段网络的集装箱班轮干扰恢复研究[J]. 中国管理科学, 2025, 33(2): 118-130. |
| [13] | 马梦迪, 李烁, 王玉涛. 中国分析师报告有效性研究:特定信息与投资者有限关注[J]. 中国管理科学, 2025, 33(2): 38-49. |
| [14] | 宋诗佳, 田飞, 李汉东. 基于时变极值方法的VaR预测模型以及应用[J]. 中国管理科学, 2025, 33(2): 61-70. |
| [15] | 李星毅, 李仲飞, 李其谦, 刘昱君, 唐文金. 基于机器学习的资产收益率预测研究综述[J]. 中国管理科学, 2025, 33(1): 311-322. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
||