主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
Articles

The Price-Volume Relation of the Shanghai Stock Index Under the Perspective of Uncertainty

Expand
  • 1. School of Economics and Management, Tongji University, Shanghai 200092, China;
    2. Institute of Finance and Economics, Tongji University, Shanghai 200092, China;
    3. Department of Finance, Shih Hsin University, Taipei 11645, China

Received date: 2016-08-25

  Revised date: 2017-03-22

  Online published: 2017-11-24

Abstract

In literature, the dynamic price-volume relation is examined by Vector Autoregression (VAR thereafter) model. In this paper, the conventional VAR approach is extended to account for the impacts of structural changes and volatility levels, which are common to China.Due to dramatic responses of China's stock market in recent years, especially two periods of considerable volatility in the years of 2007-2008 and 2014-2015, it is reasonable to conjecture that the structural changes and volatility levels could have substantial influence on the price-volume relation of Chinese stock market. The price-volume relation of the Shanghai stock market is examined with daily data from the year of 2003 to 2016, and contribution is made to the literature by estimating the price-volume relation in a VAR framework with structural breaks and volatility thresholds. As a result, more evidence and robust inferences is obtained:First, the evidence indicates that there exist significant time breaking effects. Second, the high-low volatility effects are substantially. Finally, a linear causal relation is identified from price to volume, which clearly rejects the public views.

Cite this article

SHI Jian-xun, WANG Pan-pan, He Zong-wu . The Price-Volume Relation of the Shanghai Stock Index Under the Perspective of Uncertainty[J]. Chinese Journal of Management Science, 2017 , 25(9) : 71 -80 . DOI: 10.16381/j.cnki.issn1003-207x.2017.09.009

References

[1] Karpoff J M. The relation between price changes and trading volume:A survey[J]. Journal of Financial and quantitative Analysis, 1987, 22(01):109-126.

[2] Gallant A R, Rossi P E, Tauchen G. Stock prices and volume[J]. Review of Financial Studies, 1992, 5(2):199-242.

[3] Chuang C C, Kuan C M, Lin H Y. Causality in quantiles and dynamic stock return-volume relations[J]. Journal of Banking & Finance, 2009, 33(7):1351-1360.

[4] Copeland T E. A model of asset trading under the assumption of sequential information arrival[J]. The Journal of Finance, 1976, 31(4):1149-1168.

[5] Jennings R H, Starks L T, Fellingham J C. An equilibrium model of asset trading with sequential information arrival[J]. The Journal of Finance, 1981, 36(1):143-161.

[6] Epps T W, Epps M L. The stochastic dependence of security price changes and transaction volumes:Implications for the mixture-of-distributions hypothesis[J]. Econometrica, 1976:305-321.

[7] Clark P K. A subordinated stochastic process model with finite variance for speculative prices[J]. Econometrica, 1973:135-155.

[8] Campbell J Y, Grossman S J, Wang Jiang. Trading volume and serial correlation in stock returns[J]. The Quarterly Journal of Economics, 1993, 108(4):905-939.

[9] Blume L, Easley D, O'hara M. Market statistics and technical analysis:The role of volume[J]. The Journal of Finance, 1994, 49(1):153-181.

[10] Wang Jiang. A model of competitive stock trading volume[J]. Journal of political Economy, 1994, 102, (1):127-168.

[11] Liu Xinghua, Liu Xin, Liang Xiaobei. Information-driven trade and price-volume relationship in artificial stock markets[J]. Physica A:Statistical Mechanics and its Applications, 2015, 430:73-80.

[12] 翟爱梅,周彤. 基于市场参与者行为假设的股票市场量价关系研究[J]. 中国管理科学,2011, 19(04):31-37.

[13] Lee C F, Rui O M. Does trading volume contain information to predict stock returns? Evidence from China's stockmarkets[J]. Review of Quantitative Finance and Accounting, 2000, 14(4):341-360.

[14] Chen Gongmeng, Firth M, Rui O M. The dynamic relation between stock returns, trading volume, and volatility[J]. Financial Review, 2001, 36(3):153-174.

[15] Lee B S, Rui O M. The dynamic relationship between stock returns and trading volume:Domestic and cross-country evidence[J]. Journal of Banking & Finance, 2002, 26(1):51-78.

[16] Rashid A. Stock prices and trading volume:An assessment for linear and nonlinear Granger causality[J]. Journal of Asian Economics, 2007, 18(4):595-612.

[17] Pisedtasalasai A, Gunasekarage A. Causal and dynamic relationships among stock returns, return volatility and trading volume:Evidence from emerging markets in South-East Asia[J]. Asia-Pacific Financial Markets, 2007, 14(4):277-297.

[18] Azad A S M S, Azmat S, Fang V, et al. Unchecked manipulations, price-volume relationship and market efficiency:Evidence from emerging markets[J]. Research in International Business and Finance, 2014, 30:51-71.

[19] Chuang W I, Liu H H, Susmel R. The bivariate GARCH approach to investigating the relation between stock returns, trading volume, and return volatility[J]. Global Finance Journal, 2012, 23(1):1-15.

[20] Chen S S. Revisiting the empirical linkages between stock returns and trading volume[J]. Journal of Banking & Finance, 2012, 36(6):1781-1788.

[21] Saatcioglu K, Starks L T. The stock price-volume relationship in emerging stock markets:The case of Latin America[J]. International Journal of forecasting, 1998, 14(2):215-225.

[22] Rojas E, Kristjanpoller W. Price-volume ratio analysis by causality and day-of-the-week effect for the Latin American stock markets[J]. Lecturas de Economía, 2015(83):9-31.

[23] 范从来,徐科军. 中国股票市场收益率与交易量相关性的实证分析[J]. 管理世界, 2002, (07):31-36.

[24] 张永冀,汪昌云,华晨. 历史价量信息在价格发现中更有效吗?——基于中国证券市场的数据分析[J]. 中国管理科学,2013,21(S1):346-354.

[25] Hiemstra C, Jones J D. Testing for linear and nonlinear Granger causality in the stock price-volume relation[J]. The Journal of Finance, 1994, 49(5):1639-1664.

[26] Caginalp G, DeSantis M. Does price efficiency increase with trading volume? Evidence of nonlinearity and power laws in ETFs[J]. Physica A:Statistical Mechanics and its Applications, 2017, 467:436-452.

[27] Lin H Y. Dynamic stock return-volume relation:Evidence from emerging Asian markets[J]. Bulletin of Economic Research, 2013, 65(2):178-193.

[28] Gebka B, Wohar M E. Causality between trading volume and returns:Evidence from quantile regressions[J]. International Review of Economics & Finance, 2013, 27:144-159.

[29] 钱争鸣,郭鹏辉. 上海证券交易市场量价关系的分位回归分析[J]. 数量经济技术经济研究, 2007, (10):141-150.

[30] 许启发,蔡超,蒋翠侠. 指令不均衡与股票收益关系研究——基于大规模数据分位数回归的实证[J]. 中国管理科学,2016,24(12):20-29.

[31] Matilla-García M, Marín M R, Dore M I. A permutation entropy based test for causality:The volume-stock price relation[J]. Physica A:Statistical Mechanics and its Applications, 2014, 398:280-288.

[32] Hasan R, Salim M M. Power law cross-correlations between price change and volume change of Indian stocks[J]. Physica A:Statistical Mechanics and its Applications, 2017, 473:620-631.

[33] 吴吉林. 基于机制转换Copula模型的股市量价尾部关系研究[J]. 中国管理科学, 2012,20(05):16-23.

[34] 李云红,魏宇,张帮正. 股票市场历史信息的长记忆性特征研究[J]. 中国管理科学,2015,23(09):37-45.

[35] 姚登宝,刘晓星,张旭. 市场流动性与市场预期的动态相关结构研究——基于ARMA-GJR-GARCH-Copula模型分析[J]. 中国管理科学,2016,24(02):1-10.

[36] Sims C A. Macroeconomics and reality[J]. Econometrica, 1980,48(1):1-48.

[37] Hansen B. Testing for linearity[J]. Journal of Economic Surveys, 1999, 13(5):551-576.
Outlines

/