主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
Articles

Dynamic Correlation Structure Between Market Liquidity and Market Expectation:An Analysis Based on ARMA-GJR-GARCH-Copula Model

Expand
  • School of Economics and Management, Southeast University, Nanjing 211189, China

Received date: 2014-10-30

  Revised date: 2015-09-16

  Online published: 2016-02-25

Abstract

A standardized market liquidity measure is construeted by considering "time scale" and "price scale" at the same time, and a new index of market expectation is given by use of time-varying information entropy method. The dynamic correlation structure between market liquidity and market expectation could be analyzed by combining ARMA-GJR-GARCH model with time-varying Copula model. The Chinese stock daily data from January 2009 to September 2014 are utilized for empirical analysis. The results indicate that there exist some significant persistent and negative "leverage effect" for market liquidity and market expectation, the time-varying normal Copula model is optimal through comparative analysis under the LL、AIC and BIC principles, and time-varying relevant analysis shows that in long term, market liquidity and market expectation have kept overall trend of negative relevant, and the time-varying correlation coefficient has frequently switched between positive and negative position,and there exist some big change-points in correlation structure during the Europe-US sovereign debt crisis, while little relevant relationship in normal period. All of these are of great importance for regulators to timely guide market expectation and enhance market liquidity during the crisis, which may reduce the crisis contagion and release the financial risk.

Cite this article

YAO Deng-bao, LIU Xiao-xing, ZHANG Xu . Dynamic Correlation Structure Between Market Liquidity and Market Expectation:An Analysis Based on ARMA-GJR-GARCH-Copula Model[J]. Chinese Journal of Management Science, 2016 , 24(2) : 1 -10 . DOI: 10.16381/j.cnki.issn1003-207x.2016.02.001

References

[1] Kyle A S. Continuous auctions and insider trading[J]. Econometrics, 1985,53(6):1315-1335.

[2] Sarr A, Lybek T. Measuring liquidity in financial markets.Working Paper, Monetary and Exchange Affairs Department, 2002.

[3] 梁东擎. 流动性的度量及其资产价格的关系[J]. 金融研究,2008, 9:44-55.

[4] 欧阳红兵. 金融市场的流动性:理论与应用[M]. 北京:中国社会科学出版社,2012.

[5] Chung K H, Chuwonganant C. Uncertainty, market structure, and liquidity[J]. Journal of Financial Economics, 2014, 113(3):476-499.

[6] Florackis C, Kontonikas A, Kostakis A. Stock market liquidity and macro-liquidity shocks:Evidence from the 2007-2009financial crisis[J]. Journal of International Money and Finance, 2014, 44:97-117.

[7] 刘晓星,方琳,张颖,等. 欧美主权债务危机的股票市场流动性变点检测[J]. 管理科学学报,2014, 17(7):82-94.

[8] Shim L, Peter V G. Distress selling and asset market feedback. Working Paper, Bank for International Settlements,2007.

[9] 杜晓蓉. 市场预期及其影响因素与人民币汇率波动关系分析[J]. 国际金融研究,2011, 7:43-50.

[10] 孙彬,杨朝军. 市场期望与流动性的联动性研究-基于美国次贷危机的经验证据[J]. 金融监管研究,2013,(1):1-16.

[11] 韦艳华,张世英. Copula理论及其在金融分析上的应用[M]. 北京:清华大学出版社,2008.

[12] 史永东,丁伟,袁绍峰,等. 市场互联、风险溢出与金融稳定-基于股票市场与债券市场溢出效应分析的视角[J]. 金融研究,2013,(3):170-180.

[13] Patton A J. Modeling time-varying exchange rate dependence using the conditional copula. Working Paper,Department of Economics, University of California, San Diego,2001.

[14] 于文华. 沪深股市极值相依关系测度研究-基于四类时变Copula-EVT模型[J]. 西安交通大学学报(社会科学版),2013, 14(4):90-96.

[15] Ghorbel A, Trabelsi A. Energy portfolio risk management using time-varying extreme value copula methods[J]. Economic Modelling, 2014, 38:470-485.

[16] Deng Ling, Ma Chaoqun, Yang Wenyu.Portfolio Optimization via pair Copula-GARCH-EVT-CVaR model[J]. Systems Engineering Procedia, 2011, 2:171-181.

[17] Jammazi R, Tiwari A K, Ferer R, et al. Time-varying dependence between stock andgovernment bond returns:International evidence with dynamic copulas[J]. The North American Journal of Economics and Finance, 2015, 33:74-93.

[18] 林宇,陈王,王一鸣,等. 典型事实、混合Copula函数与金融市场相依结构研究[J]. 中国管理科学,2015,23(4):20-29.

[19] 张晨,杨玉,张涛. 基于Copula模型的商业银行碳金融市场风险整合度量[J]. 中国管理科学,2015, 23(4):61-69.

[20] 张海亮,卢曼,吴冲锋. 不同"融资铜"模式的风险识别与警示[J]. 中国管理科学,2015, 23(8):10-17.

[21] Glosten L, Jagannathan R, Runkle D. On the relation between the expected value and the volatility on the nominal excess returns on stocks[J]. Journal of Finance, 1993, 48(5):1779-1801.

[22] 张维,张小涛,熊熊. 上海股票市场波动不对称性研究-GJR-与VS-GARCH模型的比较[J]. 数理统计与管理,2005, 24(6):96-102.

[23] 谢赤,张鹏,曾志坚. 开放进程中人民币汇率间相依性研究-基于动态Copula-GJR-t模型的分析[J]. 金融经济学研究,2014, 29(1):79-89.

[24] 文凤华,龚旭,黄创霞,等. 股市信息流对收益率及其波动的影响研究[J]. 管理科学学报,2013, 16(11):69-80.
Outlines

/