主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

数据驱动下的个体移动服务产品采纳行为的扩散研究

展开
  • 西安交通大学管理学院, 陕西 西安 710049
刘跃文(1982-),男(汉族),山西吕梁人,西安交通大学管理学院,副教授,研究方向:大数据与电子商务、社交网络等,E-mail: liuyuewen@mail.xjtu.edu.cn.

收稿日期: 2016-06-30

  修回日期: 2017-02-17

  网络出版日期: 2017-11-24

基金资助

国家自然科学基金资助项目(71301128,91546119,71331005,71371151)

Diffusion of Mobile Service Product Adoption:A Data-Driven Study

Expand
  • Schoolof management, Xi'an Jiaotong University, Xi'an 710049, China

Received date: 2016-06-30

  Revised date: 2017-02-17

  Online published: 2017-11-24

摘要

随着信息技术的不断发展,个体间的交互更加便捷,同时各类网络平台的不断兴起,使得个体之间的决策变得越来越相互依赖。新产品扩散的研究自Bass模型起,主要是对市场整体扩散过程及结果进行描述和预测,但这些方法均存在一定的局限性,包括完全连接的网络结构、未考虑个体之间的异质性等。本研究从社会网络的视角来研究同伴影响在个体新产品采纳行为中的作用,并通过社会网络将个体行为与市场扩散过程相连接。对于此类研究中难以区分的同质性所带来的内生性问题,本研究通过PSM模型进行了有效的控制。同时,本文使用超过120万社交网络用户的真实数据集,包含完整的社会网络、个体属性及采纳行为等信息,通过数据分析、静态与动态PSM模型相结合的方法,证实了在新产品的扩散中同伴影响的作用。此外,研究发现关系强度对同伴影响具有正向的调节作用。本文对后续从社会网络视角进行产品扩散的研究提供了方法及依据。

本文引用格式

冉晓斌, 刘跃文, 姜锦虎 . 数据驱动下的个体移动服务产品采纳行为的扩散研究[J]. 中国管理科学, 2017 , 25(9) : 141 -147 . DOI: 10.16381/j.cnki.issn1003-207x.2017.09.016

Abstract

With the continuous development of information technology, the communication between individuals becomes easier. Meanwhile, the emergence of various types of e-commerce platforms makes the decisionsof individuals become more and more interdependent. The researches of innovation diffusion (starting from the classical Bass Model)focus on the diffusion process from the perspective of market level. However, the existing studies have some limitations, such as the completely connected network which divorced from practice,and the overlook of the heterogeneity between individuals. Thus, more researchers focus the innovation diffusion from the perspective from individual level, and connect individuals' adoption behavior with markets' diffusion results. And, this connection should not lack the help of social networks. Luckily, benefited from the improvement of accessibility of social network data, the studies are able to realize.This study focuses on the influence of peers on the individual behavior of new product adoption, and connects the individual behavior and market diffusion process via social networks. A unique dataset contains more than 1.2 million users' information is taken, which come from the biggest online social network in China. It has several information including a complete social network, individual attributes and adoption behavior. Firstly, a shuffle test is used to identify the peer influence. But, the endogenous from homophilycan not be ignored. Then, the PSM model with both static and dynamic model is used to control the endogenous effectively. And the effect of peer influence is found to exist in adoption process. Furthermore, it accounts for 72% of the total factors. In addition, it is found that the network structure of individuals impacts the peer influence, and the relationship between the tie strength and peer influence has a positive moderating effect. A method and empirical evidence is provided for the future studies.

参考文献

[1] Fourt L A,Woodlock J W. Early prediction of market success for new grocery products[J]. The Journal of Marketing, 1960,25(2):31-38.

[2] Mansfield E.Technical change and the rate of imitation[J]. Econometrica, 1961,29(4):741-766.

[3] Bass F M. A new product growth for model consumer durables[J]. Management Science, 1969,15(5):215-227.

[4] Peres R, Muller E, Mahajan V. Innovation diffusion and new product growth models:A critical review and research directions[J]. International Journal of Research in Marketing, 2010, 27(2):91-106.

[5] 王光辉,刘怡君. 网络舆论危机事件的蔓延扩散效应研究[J]. 中国管理科学, 2015,23(7):119-126.

[6] Barczak G, Griffin A,Kahn K B. Perspective:Trends and drivers of success in NPD practices:Results of the 2003 PDMA best practices study[J]. Journal of Product Innovation Management, 2009, 26(26):3-23.

[7] 邵鹏. 消费者网络对试用产品的"商家-平台"合作机制的影响[J]. 中国管理科学, 2016, 24(2):76-83.

[8] Bond R M, Fariss C J,Jones J J,et al. A 61-million-person experiment in social influence and political mobilization[J]. Nature, 2012,489(7415):295-298.

[9] Centola D. The spread of behavior in an online social network experiment[J]. Science, 2010, 329(5996):1194-1197.

[10] Christakis N A,Fowler J H. The spread of obesity in a large social network over 32 years[J]. New England Journal of Medicine, 2007,357(4):370-379.

[11] 刘斌, 李磊,莫骄. 幸福感是否会传染[J]. 世界经济, 2012,(6):132-160.

[12] 李磊, 胡博,郑妍妍. 肥胖会传染吗?[J]. 经济学(季刊), 2016,(2):429-452.

[13] 陈庭强,何建敏. 基于复杂网络的信用风险传染模型研究[J]. 中国管理科学, 2014,22(11):1-10.

[14] 刘霞, 董晓松,姜旭平. 数字内容产品消费扩散与模仿的空间模式——基于空间面板模型的计量研究. 中国管理科学, 2014,22(1):139-148.

[15] Manchanda P, Xie Ying,Youn N. The role of targeted communication and contagion in product adoption[J]. Marketing Science, 2008,27(6):961-976.

[16] Iyengar R, Van den Bulte C, Valente T W. Opinion leadership and social contagion in new product diffusion[J]. Marketing Science, 2011,30(2):195-212.

[17] Conley T G,Udry C R. Learning about a new technology:Pineapple in Ghana[J]. The American Economic Review, 2010,100(1):35-69.

[18] Christakis N A, Fowler J H. Social contagion theory:examining dynamic social networks and human behavior[J]. Statistics in Medicine, 2013, 32(4):556-577.

[19] 段文奇,孔立佳. 影响第三方支付新平台成功进入市场的关键因素[J]. 中国管理科学, 2014(S1):166-174.

[20] Anagnostopoulos A, Kumar R, Mahdian M. Influence and correlation in social networks[C]//Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, Las Vegas,Nevada,USA,Auglest 24-27,2008.

[21] Fowler J H,Christakis N A. Cooperative behavior cascades in human social networks[J]. Proceedings of the National Academy of Sciences, 2010,107(12):5334-5338.

[22] Garber T, Goldenberg J,Libai B,et al. From density to destiny:Using spatial dimension of sales data for early prediction of new product success[J]. Marketing Science, 2004,23(3):419-428.

[23] Lee S H M. The role of consumers' network positions on information-seeking behavior of experts and novices:A power perspective[J]. Journal of Business Research, 2014,67(1):2853-2859.

[24] Choi H S, Kim H, Lee J. Role of network structure and network effects in diffusion of innovations[J]. Industrial Marketing Management, 2010, 39(1):170-177.

[25] Lee J, Song J. Network topology and standards war:When does a new technology survive in the network economy?[J].Pan African Meclical Journal,2003,19(6):109-109.

[26] Tucker C. Network effects and the role of influence in technology adoption[R]. Job Market Paper, 2004.

[27] Birke D,Swann G P. Network effects and the choice of mobile phone operator[J]. Journal of Evolutionary Economics, 2006, 16(1-2):65-84.

[28] Newman M E.Assortative mixing in networks[J]. Physical Review Letters, 2002,89(20):111-118.

[29] McPherson M, Smith-Lovin L,Cook J M. Birds of a feather:Homophily in social networks[J]. Annual review of sociology, 2001,27:415-444.
文章导航

/