主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

配额——交易机制下动态批量生产和减排投资策略研究

展开
  • 1. 北京交通大学经济管理学院, 北京 100044;
    2. 清华大学经济管理学院, 北京 100084;
    3. 北京航空航天大学经济管理学院, 北京 100191

收稿日期: 2014-06-23

  修回日期: 2015-12-16

  网络出版日期: 2016-04-29

基金资助

国家自然科学基金资助项目(71232007,71301082,71471007,71390334);中央高校基本科研业务费专项资金资助项目(2014RC032)

Optimal Production and Emissions Reduction Investment Policies in a Dynamic Lot Sizing Model Under Cap-and-trade

Expand
  • 1. School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China;
    2. School of Economics and Management, Tsinghua University, Beijing 100084, China;
    3. School of Economics and Management, Beihang University, Beijing 100191, China

Received date: 2014-06-23

  Revised date: 2015-12-16

  Online published: 2016-04-29

摘要

随着我国碳排放交易市场的建立和发展,在碳排放约束下逐步降低单位产出的碳排放水平成为企业生产经营管理中的中长期约束性目标。本文在一个多周期决策模型中研究了配额-交易机制下企业的最优动态批量生产、碳排放权交易和减排投资联合决策问题。生产商在整个决策周期期初决定是否进行减排投资以及投资规模,根据每个周期的生产计划决定减排设备的运行计划。根据节能减排技术的特点,本文假设生产商运行减排设备时不仅降低了产品的单位生产碳排放量,而且降低了产品的单位生产成本。本文基于广义Benders分解法对模型进行了最优性分析,得到了最优生产决策和最优减排投资决策的一些基本性质,并通过数值实验分析了碳排放配额和碳排放权价格对生产商总成本、总排放以及减排投资决策的影响。本文的数值实验分析结果发现:(1)当碳交易市场上的碳排放权充足时,减少碳排放配额或改变碳排放配额的分配方式并不能影响生产商的碳排放水平;(2)碳排放权价格是影响生产商的碳排放水平和减排投资规模的关键因素;(3)随着碳排放权价格的上升,即使拥有足够的碳排放配额,生产商仍会不断提高减排投资规模以获得减排收益。研究结果对碳排放交易体系下生产企业进行减排技术投资具有较强的管理启示。

本文引用格式

黄帝, 陈剑, 周泓 . 配额——交易机制下动态批量生产和减排投资策略研究[J]. 中国管理科学, 2016 , 24(4) : 129 -137 . DOI: 10.16381/j.cnki.issn1003-207x.2016.04.015

Abstract

With the establishment and development of China's emissions trading market, the reduction of carbon emissions intensity has become a medium and long term mandatory target in companies' production operations management. A dynamic lot sizing model is proposed to investigate the optimal production, emissions trading and abatement investment decisions of a manufacturer under cap-and-trade. At the beginning of the planning horizon, the manufacturer determines the optimal abatement investment decisions, including the timing of investment in an abatement technology and the optimal abatement capacity. In each period, the manufacturer decides the optimal emission abatement size according to the production planning. It is assumed that the abatement technology can reduce both carbon emissions and energy consumption in the production process. Based on the generalized Benders decomposition approach, the dynamic model is analyzed and some properties of the optimal solution are derived. Numerical experiments are conducted to examine the effects of emission cap and emission allowance price on the manufacturer's total cost, total emissions level, and the optimal abatement investment decisions. It is found that: (1) when the supply of emission allowances in the market is abundant, reducing the carbon cap or changing the initial allocation rule of free emission allowances will not reduce the manufacturer's carbon emissions level; (2) carbon emission allowance price is the key factor to control the manufacturer's carbon emissions level and abatement capacity; (3) with the increase of carbon price, the manufacturer will expand the abatement capacity even if it has already held enough allowances to cover all its emissions. Our research provides useful managerial insights for manufacturing firms to make investment in carbon emissions abatement under the cap-and-trade system.

参考文献

[1] Hua Guowei, Cheng T C E, Wang Shouyang. Managing carbon footprints in inventory management[J]. International Journal of Production Economics, 2011, 132(2): 178-185.

[2] Benjaafar S, Li Yanzhi, Daskin M S. Carbon footprint and the management of supply chains: Insights from simple models[J]. IEEE transactions on automation science and engineering, 2013, 10(1): 99-116.

[3] Absi N, Dauzère-Pérès S, Kedad-Sidhoum S, et al. Lot sizing with carbon emission constraints[J]. European Journal of Operational Research, 2013, 227(1): 55-61.

[4] 胡海菊, 李勇建. 考虑再制造和产品需求可替代的短生命周期产品动态批量生产计划问题[J]. 系统工程理论与实践, 2007, (12): 76-84.

[5] 戴道明.碳排放约束下动态定价与批量的联合决策[J]. 合肥工业大学学报(自然科学版), 2013, 36(8): 996-1001.

[6] 王明喜, 王明荣, 汪寿阳, 等. 最优减排策略及其实施的理论分析[J]. 管理评论, 2010, 22(6): 42-47.

[7] 赵道致, 张学强. 面向碳减排投资优化的低碳供应链网络设计及优化研究[J]. 物流技术, 2013, 32(3): 215-218.

[8] 谢鑫鹏, 赵道致. 基于CDM的两级低碳供应链企业产品定价与减排决策机制研究[J]. 软科学, 2013, 27(5): 80-85.

[9] 谢鑫鹏, 赵道致. 低碳供应链企业减排合作策略研究[J]. 管理科学, 2013, 26(3): 108-119.

[10] 杜少甫, 董骏峰, 梁樑, 等. 考虑排放许可与交易的生产优化[J]. 中国管理科学, 2009, 17(3): 81-86.

[11] 何大义, 马洪云. 碳排放约束下企业生产与存储策略研究[J]. 资源与产业, 2011, 13(2): 63-68.

[12] 侯玉梅, 潘登, 梁聪智. 碳排放交易下双寡头企业生产与减排研究[J]. 商业研究,2013, 55(1): 176-182.

[13] 陈伯成,李英杰."考虑排放许可交易的生产优化"的补充研究[J]. 中国管理科学, 2014, 22(9):141-148.

[14] Islegen O, Reichelstein S J. Carbon capture by fossil fuel power plants: An economic analysis[J]. Management Science, 2011, 57(1): 21-39.

[15] Jiang Yan, Klabjan D. Optimal emissions reduction investment under green house gas emissions regulations. Working paper, Northwestern University, 2012.

[16] 骆瑞玲,范体军,夏海洋. 碳排放交易政策下供应链碳减排技术投资的博弈分析[J]. 中国管理科学, 2014, 22(11): 44-53.

[17] 王明喜,鲍勤,汤铃,等. 碳排放约束下的企业最优减排投资行为[J]. 管理科学学报, 2015, 18(6): 41-57.

[18] 陈伯成,李英杰,闫学为. 补贴及惩罚模式下的碳排放许可交易生产优化[J]. 中国管理科学, 2014, 22(SI): 774-781.

[19] 周艳菊,黄雨晴,陈晓红,等. 促进低碳产品需求的供应链减排成本分担模型[J]. 中国管理科学, 2015, 23(7): 85-93.

[20] Vogt-Schilb A, Meunier G, Hallegatte S. Should marginal abatement costs differ across sectors: The effect of low-carbon capital accumulation. Working Paper, World Bank, 2013.

[21] 鲁奎, 杨昌辉, 戴道明. 能力受限批量问题的启发式算法与CPLEX仿真优化[J]. 系统仿真学报, 2008, 20(3): 6365-6371.

[22] 鲁奎, 杨昌辉, 戴道明. 运输能力受限与费用时变批量问题的拉格朗日松弛启发式算法[J]. 系统工程理论与实践, 2008,(10): 47-52.

[23] Geoffrion A M. Generalized benders decomposition[J]. Journal of Optimization Theory and Application. 1972, 10(4):237-260.

[24] Wagner H M, Whitin T M. Dynamic version of the economic lot size model[J]. Management Science, 1958, 5(1): 89-96.

[25] Brahimi N, Dauzère-Pérès S, Najid N M, et al. Single item lot sizing problems[J]. European Journal of Operational Research, 2006, 168(1): 1-16.

[26] Aggarwal A, Park J K. Improved algorithms for economic lot size problem[J]. Operations Research, 1993, 41(3):549-571.

[27] Gade D, Kücükyavuz S. Formulations for dynamic lot sizing with service levels[J]. Naval Research Logistics, 2013, 60(2):87-101.
文章导航

/