受全球经济、政治、能源和政策等各方面因素影响,碳资产价格波动剧烈,探寻适合碳市场风险度量的计量方法具有重要的现实意义。论文以EUA和CER市场为研究对象,对比了CAViaR与GARCH-GED模型在不同预测区间、不同置信水平下度量碳市场风险时的表现,发现CAViaR模型在模型拟合和预测方面要优于GARCH-GED模型,但由于CER市场具有更大的不确定性,导致了CAViaR模型在CER市场的预测表现比EUA市场更差,并且在预测1%VaR时,CAViaR模型表现出不稳定性;论文进一步将EVT与CAViaR模型结合来改进碳市场1%VaR的预测效果,发现在处理具有高风险预测区间以及高风险的CER市场,EVT-CAViaR模型的预测表现都更加稳健,说明该方法能够一定程度上提升碳市场风险的预测精度。
The price of carbon assets fluctuates heavily because of the global economy, politics, energy, and so on, thus it has been of realistic significance to have research on the risk measurement of carbon market. In this paper, EUA and CER markets are taken as the research objects, and the performance of CAViaR model and GARCH-GED model in measuring the risk of carbon markets under the different prediction intervals and confidence levels are compared, finding that:(1) CAViaR model is better than GARCH-GED model in fitting and prediction; (2) CER market has greater uncertainty relative to EUA market; (3) when predicting 1%VaR, the CAViaR model is instable. In hope of a better prediction effect, this paper takes the combination of CAViaR model and EVT is taken to predict 1%VaR, finding that the prediction of EVT-CAViaR model is more steady and reliable under the high-risk prediction intervals and the CER market, therefore a conclusion can be made that this new method promises to partly improve the prediction accuracy of the extreme risk of carbon markets.
[1] 朱帮助,王平,魏一鸣.基于EMD的碳市场价格影响因素多尺度分析[J].经济学动态,2012,(06):92-97.
[2] 张跃军,魏一鸣.化石能源市场对国际碳市场的动态影响实证研究[J].管理评论,2010,(06):34-41.
[3] Li Jianping, Tang Ling, Sun Xiaolei, et al. Oil-importing optimal decision considering country risk with extreme events:A multi-objective programming approach[J]. Computers & Operations Research, 2014, 42:108-115.
[4] Benz E, Trück S. Modeling the price dynamics of CO2 emission allowances[J]. Energy Economics, 2009, 31(1):4-15.
[5] Montagnoli A, De Vries F P. Carbon trading thickness and market efficiency[J]. Energy Economics, 2010, 32(6):1331-1336.
[6] 汪文隽,缪柏其,鲁炜.基于Copula的QDⅡ与排放权资产的投资组合构建[J].数理统计与管理,2011,30(05):922-929.
[7] 淳伟德,王璞.基于EVT的碳金融市场收益率尾部特征研究[J].社会科学研究,2012,(03):17-20.
[8] 杨超,李国良,门明.国际碳交易市场的风险度量及对我国的启示——基于状态转移与极值理论的VaR比较研究[J].数量经济技术经济研究,2011,(04):94-109.
[9] Mi Zhifu, Zhang Yuejun. Estimating the value at risk of EUA futures prices based on the extreme value theory[J]. International Journal of Global Energy Issues, 2011, 35(2):145-157.
[10] 张晨,杨玉,张涛.基于Copula模型的商业银行碳金融市场风险整合度量[J].中国管理科学,2015,23(4):70-78.
[11] Koenker R, Bassett Jr G. Regression quantiles[J]. Econometrica:journal of the Econometric Society, 1978,46(1):33-50.
[12] 许启发,张金秀,蒋翠侠.基于非线性分位数回归模型的多期VaR风险测度[J].中国管理科学,2015,23(3):56-65.
[13] Engle R F, Manganelli S. CAViaR:Conditional value at risk by quantile regression[R]. Working Paper, National bureau of economic research, 1999.
[14] Engle R F, Manganelli S. CAViaR:Conditional autoregressive value at risk by regression quantiles[J]. Journal of Business & Economic Statistics, 2004, 22(4):367-381.
[15] Nelson D B. ARCH models as diffusion approximations[J]. Journal of Econometrics, 1990, 45(1):7-38.
[16] 张跃军,范英,魏一鸣.基于GED-GARCH模型的中国原油价格波动特征研究[J].数理统计与管理, 2007, 26(3):398-406.
[17] Bollerslev T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of econometrics, 1986, 31(3):307-327.
[18] 陈倩.基于极值理论的商业银行操作风险度量研究[J].中国管理科学,2012,(专辑):332-339.
[19] Gilli M. An application of extreme value theory for measuring financial risk[J]. Computational Economics, 2006, 27(2-3):207-228.
[20] McNeil A J, Frey R, Embrechts P. Quantitative risk management:Concepts, techniques, and tools[M]. Princeton, NewJersey:Princeton University Press, 2010.
[21] Manganelli S, Engle R F. Value at risk models in finance[R]. Working Paper, Frankfurt am Main:European Central Bank, 2001.
[22] Schaumburg J. Predicting extreme value at risk:Nonparametric quantile regression with refinements from extreme value theory[J]. Computational Statistics & Data Analysis, 2012, 56(12):4081-4096.
[23] Kupiec P H. Techniques for verifying the accuracy of risk measurement models[J]. The Journal of Derivatives, 1995, 3(2):73-84.