主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

基于逆控制工序的重复性项目最短工期计算方法

展开
  • 华北电力大学经济与管理学院, 北京 102206
张立辉(1974-),男(汉族),湖南宁乡人,华北电力大学经济与管理学院,博士,教授,研究方向:项目计划与优化.

收稿日期: 2013-06-30

  修回日期: 2014-03-31

  网络出版日期: 2015-09-28

基金资助

国家自然科学基金资助项目(71271081,71171079);中央高校基本科研业务费专项资金资助项目(13ZD08)

The Influence of Environmental Pollution, Economic Growth and Healthcare Services to Public Health Based on China's Provincial Panel Data

Expand
  • School of Economics and Management, North China Electric Power University, Beijing 102206, China

Received date: 2013-06-30

  Revised date: 2014-03-31

  Online published: 2015-09-28

摘要

最短工期问题是重复性项目调度中的一类常见问题。本文首先根据不同类型控制工序工期与总工期之间的变化关系,提出并证明了总工期的计算公式,给出了逆控制工序存在的必要条件。然后提出了最短工期问题的优化策略,即只需对所有满足逆控制工序必要条件的工序系进行执行模式的选择,而其余工序系直接选择最快执行模式。最后以该策略为基础设计了新的遗传算法。算例分析表明,与现有的其它算法相比,极大地简化了计算量,提高了计算效率。

本文引用格式

张立辉, 邹鑫, 乞建勋 . 基于逆控制工序的重复性项目最短工期计算方法[J]. 中国管理科学, 2015 , 23(9) : 171 -176 . DOI: 10.16381/j.cnki.issn1003-207x.2015.09.021

Abstract

In repetitive project scheduling, usually it is needed to minimize the project duration when each activity is given some available productivities. First, two theorems about repetitive scheduling method are presented in this paper, where one is used to determine the calculation formula of the project duration, and another proposes the necessary conditions for any activity become the backward controlling activity. Second, an optimization model based on these two theorems is proposed to minimize both the project duration and the total interruption days. Last, the performance of the proposed algorithm is validated by comparing with other existing algorithms.

参考文献

[1] 蔡晨,万伟. 基于PERT/CPM的关键链管理[J]. 中国管理科学, 2003, 11(6):35-39.

[2] 徐玖平, 胡知能, 王緌. 运筹学 (Ⅰ类)[M]. 北京:科学出版社, 2007.

[3] Harris R B, Ioannou P G. Scheduling projects with repeating activities[J]. Journal of Construction Engineering and Management, 1998, 124(4): 269-278.

[4] Kallantzis A, Lambropoulos S. Correspondence of activity relationships and critical path between time-location diagrams and CPM[J]. Operational Research, 2004, 4(3): 277-290.

[5] Kallantzis A, Soldatos J, Lambropoulos S. Linear versus network scheduling: A critical path comparison[J]. Journal of Construction Engineering and Management, 2007, 133(7): 483-491.

[6] Yamín R A, Harmelink D J. Comparison of linear scheduling model(LSM) and critical path method(CPM)[J]. Journal of Construction Engineering and Management, 2001, 127(5): 374-381.

[7] Arditi D, Tokdemir O B, Suh K. Effect of learning on line-of-balance scheduling[J]. International Journal of Project Management, 2001,19(5): 265-277.

[8] O'Brien J J. VPM scheduling for high-rise buildings[J]. Journal of the Construction Division, 1975, 101(4): 895-905.

[9] Harmelink D J, Rowings J E. Linear scheduling model: Development of controlling activity path[J]. Journal of Construction Engineering and Management, 1998, 124(4): 263-268.

[10] Selinger S. Construction planning for linear projects[J]. Journal of the Construction Division, 1980, 106(2):195-205.

[11] Russell A D, Caselton W F. Extensions to linear scheduling optimization[J]. Journal of Construction Engineering and Management, 1988, 114(1): 36-52.

[12] Hyari K, EI-Rayes K. Optimal planning and scheduling for repetitive construction projects[J]. Journal of Management and Engineering, 2006, 22(1):11-19.

[13] Liu Shushun S, Wang C J. Optimization model for resource assignment problems of linear construction projects[J]. Automation in Construction, 2007, 16(4):460-473.

[14] Long L D, Ohsato A. A genetic algorithm-based method for scheduling repetitive construction projects[J]. Automation in Construction, 2009, 18(4):499-511.

[15] Zhang Lihui, Qi Jianxun. Controlling path and controlling segment analysis in repetitive scheduling method[J]. Journal of Construction Engineering and Management, 2012, 138(11):1341-1345.
文章导航

/