主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

考虑交易成本的投资组合效率估计方法

展开
  • 1. 湖南大学工商管理学院, 湖南 长沙 410082;
    2. Business School, University of Kent, Kent, CT2 7PE
周忠宝(1977-),男(汉族),山东齐河人,湖南大学工商管理学院副教授,博士生导师,研究方向:金融工程与风险管理、系统优化与决策.

收稿日期: 2013-01-26

  修回日期: 2013-07-03

  网络出版日期: 2015-01-21

基金资助

国家自然科学基金资助项目(71371067,71431008)

Technical Efficiency Evaluation Approach for Portfolios with Transaction Costs

Expand
  • 1. School of Business Administration, Hunan University, Changsha 410082, China;
    2. Business School, University of Kent, Kent, CT2 7PE, England

Received date: 2013-01-26

  Revised date: 2013-07-03

  Online published: 2015-01-21

摘要

投资组合绩效评价是学术界研究的热点问题。本文在经典的经济学框架下,基于真实前沿面,给出了投资组合效率的明确定义。由于实际投资环境的影响,投资组合优化模型非常复杂,难以获得真实前沿面的解析解,这给投资组合效率的应用带来了很大的困难。本文基于投资组合理论,在投资组合模型所对应的前沿面为凹函数的情况下,采用基于数据的投资组合DEA评价模型构造前沿面来逼近真实的前沿面,从而估计一般情形下投资组合的效率。在此基础上研究了考虑交易成本的投资组合效率评价问题,并用实例说明了本文方法的合理性与可行性。

本文引用格式

周忠宝, 丁慧, 马超群, 王梅, 刘文斌 . 考虑交易成本的投资组合效率估计方法[J]. 中国管理科学, 2015 , 23(1) : 25 -33 . DOI: 10.16381/j.cnki.issn1003-207x.2015.01.004

Abstract

Portfolio performance is an academic hotspot for researchers. Within the classical framework of economics, the definition of portfolio efficiency is provided based on the efficient frontier. However, in practical situations, the portfolio optimization models are usually very complicated, and thus the analytical solutions of frontier are very difficult to obtain. Under the assumption that the real efficient frontier is a concave function, DEA model is adopted to approximate the real frontier and portfolio efficiencies. The problem of evaluating the portfolio efficiency on considering transaction costs is examined. In the end, some examples are presented to show the practicality and feasibility of the proposed approach.

参考文献

[1] Markowitz H.Portfolio selection [J]. Journal of Finance, 1952, 7(1): 77-91.

[2] Joro T, Na P. Portfolio performance evaluation in a mean-variance-skewness framework[J]. European Journal of Operational Research, 2006, 175(1): 446-461.

[3] Charnes A, Cooper W W, Rhodes E. Measuring efficiency of decision making units [J]. European of Operational Research, 1978, 2(6): 429-444.

[4] BankerR D, Charnes A, Cooper W W. Some models for estimating technical and scale inefficiencies in data envelopment analysis [J]. Management Science, 1984, 30(9): 1078-1092.

[5] Lobo M S, Fazel M, Boyd S. Portfolio optimization with linear and fixed transaction costs [J]. Annals of Operations Research, 2007, 152(1): 341-365.

[6] Angelelli E, Mansini R, Speranza M G. A comparison of MAD and CVaR models with real features [J]. Journal of Banking and Finance, 2008, 32(7): 1188-1197.

[7] Bertsimas D,Pachamanova D. Robust multiperiod portfolio management in the presence of transaction costs [J]. Computers and Operations Research, 2008, 35(1): 3-17.

[8] Ben-Tal A,Margalit T, Nemirovski A. Robust modeling of multi-stage portfolio problems [M]//Frenk H, Roos K, Terlaky T, et al. High-performance optimization. Dordrecht: Kluwer Academic Publishers; 2000.

[9] Yu J R, Lee W Y. Portfolio rebalancing model using multiple criteria [J]. European Journal of Operational Research, 2011, 209(2): 166-175.

[10] Best M J, Hlouskova J. An algorithm for portfolio optimization with variable transaction costs, part 1: theory [J]. Journal of Optimization Theory and Applications, 2007, 135(3): 563-581.

[11] Best M J, Hlouskova J. An algorithm for portfolio optimization with variable transaction costs, part 2: computational analysis [J]. Journal of Optimization Theory and Applications, 2007, 135(3): 531-547.

[12] Le Thi H A, Moeini M, Dinh T P. DC programming approach for portfolio optimization under step increasing transaction costs [J]. Optimization, 2009, 58(3): 267-289.

[13] Konno H,Akishino K, Yamamoto R. Optimization of a long-short portfolio under nonconvex transaction cost [J]. Computational Optimization and Applications, 2005, 32(1-2): 115-132.

[14] Konno H,Wijayanayake A. Mean-absolute deviation portfolio optimization model under transaction costs [J]. Journal of the Operations Research Society of Japan, 1999, 42(4): 422-435.

[15] Konno H,Wijayanayake A. Portfolio optimization problem under concave transaction costs and minimal transaction unit constraints [J]. Mathematical Programming Series B, 2001, 89(2): 233-250.

[16] Konno H,Wijayanayake A. Portfolio optimization under D.C. transaction costs and minimal transaction unit constraints [J]. Journal of Global Optimization, 2002, 22(1-4): 137-154.

[17] Konno H, Yamamoto R. Minimal concave cost rebalance of a portfolio to the efficient frontier [J]. Mathematical Programming Series B, 2003, 97(3): 571-585.

[18] Konno H, Yamamoto R. Global optimization versus integer programming in portfolio optimization undernonconvex transaction costs[J]. Journal of Global Optimization, 2005, 32(2): 207-219.

[19] Farrell M J. The Measurement of Production Efficiency[J]. Journal of Royal Statistical Society, Series A, General, 1957, 120(3): 253-281.

[20] Leibenstein H. Allocative effciency vs "X-efficiency"[J]. American Economic Review, 1966, 56(3): 392-415.
文章导航

/